Navidezni prehod Venere preko Sončeve ploskve 6.6.2012

Velika Plešivica (45°31′N 15°18′E / 45.517°N 15.3°E), 6.6.2011 ob 5:45, fotoaparat Nikon, objektiv Tamron 80-300mm Tele-Macro,  filter 5,25″ računalniška disketa.

Ta vnos je objavil Vinc v Razno in zaznamoval z , . Dodaj zaznamek do trajne povezave .

O Vinc

Končal gimnazijo v Črnomlju 1971, pričel honorarno poučevati na tej gimnaziji v šol.letu 1973/74, se v šol. letu 1976/77 zaposlil kot učitelj matematike, leta 1978 diplomiral iz pedagoške matematike pri dr. Niku Prijatelju s temo Galoisova teorija. Na gimnaziji in poklicni kovinarski šoli učil matematiko, fiziko, fizikalna merjenja, računalništvo ter informatiko, dokumentaristiko in arhivistiko. Dolgoletni mentor šahovskega, fotografskega, fizikalnega, računalniškega in astronomskega krožka. Absolvent 3. stopnje pedagoške fizike, v 90. letih član skupine za prenovo gimnazijske fizike, avtor programske opreme za merilno krmilni vmesnik pri pouku fizike, soavtor učbenikov za gimnazijo Fizika-Mehanika in Fizika-Elektrika. Mentor trinajstim raziskovalnim nalogam v okviru Gibanja Znanost mladini ter trem raziskovalnim nalogam v okviru Krkinih nagrad in številnim tekmovalcem iz logike, lingvistike, matematike, fizike, astronomije in računalništva. Mentor 2. spletne strani šole in prve strani o Beli krajini leta 1997, pobudnik in od 2007 do 2010 urednik spletnih učilnic Srednje šole Črnomelj. Pobudnik šolske Facebook strani. Vinogradnik, sadjar, čebelar, bloger. Več najdete na njegovi spletni strani.

One thought on “Navidezni prehod Venere preko Sončeve ploskve 6.6.2012

  1. Any regular poyogln can be drawn using a straightedge, compass, and protractor. In ancient Greece, it was the custom to attempt to draw regular poyoglns using only a straightedge and compass. Since the Mira is equivalent to a compass for many of its functions, we shall also include the Mira. Gauss found that any regular poyogln of n sides can be constructed with an unmarked ruler and a compass if all of the following conditions are met:Each odd factor of n is unique.Each odd factor of n is prime.Each odd factor of n is of the form2^2 k + 1, for some integer kThis expression takes on the following values for different substitutions for k.k 0 1 2 3 4 52^2 k + 1 3 5 17 257 65537 4294967297Of the six numbers shown, all but the last are prime. Therefore, the numbers 3, 5, 17, 257, and 65537 can all be factors of n, where n is the number of sides of a regular poyogln. However, there can be no other odd factors of n.It would be possible to construct a regular 60-sided poyogln with a compass and a straightedge, since the only odd factors of 60 are 3 and 5, and each different odd factor is unique. On the other hand, it is impossible to construct a regular 100-sided poyogln with a compass and a straightedge, since 100 has more than one factor of 5. A 21-sided regular poyogln cannot be constructed with compass and straightedge because 21 has an odd factor of 7, which is not in the table above. The values of n less than 100 for which a regular n-sided poyogln can be constructed using only a compass and straightedge are listed below:3 4 5 6 8 10 12 15 16 17 20 2430 32 34 40 48 51 60 64 68 80 85 96If a regular poyogln has the number of its sides other than in the above list, it can be constructed by using a protractor in addition to the compass and straightedge. In each case, a circle is drawn, the circle is divided into a number of arcs equal to the number of sides of the regular poyogln, and the endpoints of the arcs are connected together with segments. To construct a regular nonagon (9 sides) mark off 40 degrees of arc around the circle for each side and connect the mark

Komentiranje zaprto.