Geometrijska z diofantskim pridihom

Andrej je objavil naslednjo nalogo:

Če brez prekrivanja dodamo v vogal trikotnika še dva mnogokotnika, dobimo zgornjo skico. Ali lahko to naredimo še s kakšnim parom mnogokotnikov, od katerih bi imel eden več stranic?

Rešitev: Spomnimo se, da je velikost notranjega kota v pravilnem n-kotniku enaka (n-2)\frac{180^o}{n} ali v radianih (n-2)\frac{\pi}{n}, pa lahko za kot v skupnem oglišču večkotnikov zapišemo

    \[\frac{\pi}{3}+(m-2)\frac{\pi}{m}+(n-2)\frac{\pi}{n}=2\pi.\]

Po ureditvi dobimo lepo diofanstko enačbo

    \[mn-6m-6n=0.\qquad(1)\]

Iščemo torej taki naravni števili m in n, ki tej enačbi zadoščata. Prištejmo na obeh straneh enačbe 36 in levo stran razcepimo. Dobimo

    \[(m-6)(n-6)=36\]

Na levi strani enačbe sta dva faktorja, torej morata biti tudi na desni dva. Ker je

    \[36=1\cdot36=2\cdot 18=3\cdot 12=4\cdot 9=6\cdot 6,\]

vidimo, da so rešitve enačbe (1) naslednji pari (m,n):

    \[(7,42),\quad (8,24),\quad (9,18),\quad (10,15),\quad(12,12).\]

Na zgornji skici je narisana srednja rešitev, devetkotnik  in osemnajstkotnik. Možnosti sta torej še dve: osemkotnik  in štiriindvajsetkotnik ter sedemkotnik in dvainštiridesetkotnik.

Ta vnos je objavil Vinc v Geogebra, Geometrija, Matematika, Razno in zaznamoval z , . Dodaj zaznamek do trajne povezave .

O Vinc

Končal gimnazijo v Črnomlju 1971, pričel honorarno poučevati na tej gimnaziji v šol.letu 1973/74, se v šol. letu 1976/77 zaposlil kot učitelj matematike, leta 1978 diplomiral iz pedagoške matematike pri dr. Niku Prijatelju s temo Galoisova teorija. Na gimnaziji in poklicni kovinarski šoli učil matematiko, fiziko, fizikalna merjenja, računalništvo ter informatiko, dokumentaristiko in arhivistiko. Dolgoletni mentor šahovskega, fotografskega, fizikalnega, računalniškega in astronomskega krožka. Absolvent 3. stopnje pedagoške fizike, v 90. letih član skupine za prenovo gimnazijske fizike, avtor programske opreme za merilno krmilni vmesnik pri pouku fizike, soavtor učbenikov za gimnazijo Fizika-Mehanika in Fizika-Elektrika. Mentor trinajstim raziskovalnim nalogam v okviru Gibanja Znanost mladini ter trem raziskovalnim nalogam v okviru Krkinih nagrad in številnim tekmovalcem iz logike, lingvistike, matematike, fizike, astronomije in računalništva. Mentor 2. spletne strani šole in prve strani o Beli krajini leta 1997, pobudnik in od 2007 do 2010 urednik spletnih učilnic Srednje šole Črnomelj. Pobudnik šolske Facebook strani. Vinogradnik, sadjar, čebelar, bloger. Več najdete na njegovi spletni strani.