PTR v srednji šoli(12)

Nazaj

Zadnjič smo izpeljali izraz kinetično energijo v PTR, dobili smo

    \[W_k=m_oc^2(\gamma-1).\]

Pri majhnih hitrostih mora ta formula preiti v običajno formulo za kinetično energijo, katero poznamo že iz osnovne šole. Poglejmo, kako.

    \[W_k=m_oc^2(\gamma-1)=m_oc^2\left(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\right)=m_oc^2\left(\left(1-\frac{v^2}{c^2}\right)^{-\frac{1}{2}}-1\right)\]

Koren razvijemo v binomsko vrsto. Kako? Spomnimo se na binomski izrek, ki pove, kako izračunamo potenco dvočlenika

    \[(a+b)^n={n \choose 0} a^nb^0+{n \choose 1} a^{n-1}b^1+{n \choose 2} a^{n-2}b^2+\dots {n \choose n} a^ob^n\]

V prejšnjih primerih je bil n naravno število in izraz na desni veččlenik. Tokrat pa imamo v eksponentu -1/2 , zato bo členov neskončno – binomska vrsta. A potrebujemo le nekaj členov. Izračunajmo nekaj začetnih binomskih simbolov (spomnimo se tudi na njihove lastnosti)

    \[{-\frac{1}{2} \choose 0}=1,~~{-\frac{1}{2} \choose 1}=-\frac{1}{2},~~{-\frac{1}{2} \choose 2}=\frac{-\frac{1}{2}\left( -\frac{3}{2}\right)}{1\cdot 2}=\frac{3}{8},\dots\]

Sestavimo torej v zgornjem izrazu  vrsto

    \[W_k=m_oc^2(\gamma-1)=m_oc^2\left(1+\frac{1v^2}{2c^2}+\frac{3v^4}{8c^4}+\dots -1\right)\]

Matematik je svoje delo opravil, sedaj pa nastopi fizik. Ker je

    \[v<<c,\]

lahko v napisani vrsti vse člene od vključno tretjega naprej zanemarimo, saj so premajhni, da bi kaj bistvenega prispevali.  Prvi in zadnji člen v oklepaju se še odštejeta, tako da ostane samo drugi. Dobimo torej

    \[W_k=\frac{m_ov^2}{2},\]

kar smo tudi pričakovali.

konec

NAZAJ, NA ZAČETEK

PTR v srednji šoli (11)

Poglejmo še, kako je v PTR z delom in energijo. Najprej ugotovimo, da 2. Newtonov zakon v obliki

    \[\vec{F}=m\vec{a}\]

ne velja,  saj  masa telesa ni stalna, temveč odvisna  od hitrosti. Zapisati ga moramo  takole

    \[\vec{F}=\frac{d\vec{G}}{dt},\]

pri čemer je

    \[\vec{G}=m\vec{v}\]

gibalna količina telesa.  Delo, ki ga opravi ta sila, je torej enako

    \[A=\int_{x_1}^{x_2}{F(x)dx}=\int_{x_1}^{x_2}{\frac{dG}{dt}dx}=\int_{G_1}^{G_2}{vdG}\]

 Pozabavajmo se  najprej z nedeločeni integralom – integrandu poiščimo primitivno funkcijo. Integrala se najprej lotimo “per partes”

    \[\int{vdG}=vG-\int{Gdv}=vG-m_o\int{\frac{vdv}{\sqrt{1-\frac{v^2}{c^2}}}},\]

nato pa uvedemo novo spremenljivko

    \[1-\frac{v^2}{c^2}=u.\]

Dobimo, da je zadnji integral enak

    \[m_o\int{\frac{vdv}{\sqrt{1-\frac{v^2}{c^2}}}}=-m_oc^2\sqrt{1-\frac{v^2}{c^2}},\]

kar skupaj da iskano funkcijo

    \[\int{vdG}=\frac{m_ov^2}{\sqrt{1-\frac{v^2}{c^2}}}+m_oc^2\sqrt{1-\frac{v^2}{c^2}}=\frac{m_o(v^2+c^2-v^2)}{\sqrt{1-\frac{v^2}{c^2}})}=mc^2.\]

Delo je torej enako spremembi zgornje funkcije

    \[A=\int_{G_1}^{G_2}{vdG}=(m_2-m_1)c^2.\]

Iz fizike pa poznamo izrek o mehanski energiji: Delo je enako spremembi mehanske  energije telesa.  Zato  prepoznamo v zgornji funkciji energijo telesa:

    \[W=mc^2~~~~(1)\]

Telo, ki miruje,  ima torej mirovno ali lastno  energijo

    \[W_o=m_oc^2~~~~(2)\]

Enačba (1) je najbrž najslavnejša fizikalna enačba. O njej poje celo pesem  J. Menarta:

Oda od, balada balad, E=mc². 

Enačba (2) pa daje odgovor na pomembno vprašanje: Kaj je masa? V obrazcu vidimo, da je masa energija, deljena s kvadratom konstante, torej (zelo zgoščena) energija.

Polno energijo delca W  definiramo kot vsoto njegove lastne in kinetične energije, torej

    \[W=W_o+W_k.\]

Od tod dobimo za kinetično energijo naslednji izraz

    \[W_k=W-W_o=mc^2-m_oc^2=m_oc^2(\gamma-1).\]

Pri tem je seveda \gamma relativistični faktor, omenjen v prejšnjih poglavjih.j

NAZAJ NAPREJ