Stewartov izrek

Imejmo trikotnik ABC in na stranici $c$ poljubno točko $D.$  Zveznico $\overline{CD}$ označimo z $d$. Med geometrijskimi izreki, ki se jih v srednji šoli običajno preskoči, je tudi Stewartov izrek 

Izrek trdi naslednje:

$$m^2a+n^2b=c(d^2+mn).$$

Dokaz: Kota $\angle ADC$ in $\angle CDB$ sta suplementarna, označimo ju z $\varphi$ in $180^o-\varphi.$ Ker je $\cos(\varphi)=-cos(180^o-\varphi),$  zapišemo za levi in desni trikotnik cosinusov izrek

$$\frac{d^2+m^2-b^2}{2dm}=-\frac{d^2+n^2-a^2}{2dn}.$$

Preuredimo in dvakrat upoštevamo $m+n=c,$ pa res pridemo do navedenega izreka.

Naloga:

  1. Zapiši ta izrek za enakokrak trikotnik.
  2. Dokaži Stewartov izrek samo s Pitagorovim izrekom! Namig: Najprej na skici potegni pravo črto!

Sangaku(7)

Če sta stranici rjavih kvadratov zaporedoma a in b, kolikšna je

  • ploščina oranžnega kvadrata,
  • ploščina vijoličastega kvadrata,
  • ploščina zelenega kvadrata?

Naloga je rešljiva z znanjem drugega letnika srednje šole. A če znate potegniti pravo črto (kar zna po mnenju mojega profesorja dr. Franca Križaniča, beri Nihalo, prostor in delci – le pravi matematik) postane naloga rešljiva že z znanjem osnovne šole. Korajžno na delo!

Sangaku(4)

Četrta japonska uganka je zelo lepa, a morda malo težja – ali pa tudi ne?

Določite polmer katerega od skladnih krogov, če je stranica kvadrata enaka 1. Določi tudi kot med poševnico skozi spodnje levo oglišče in osnovnico kvadrata.

Krožnica(2)

Krožnici se dotikata z zunanje strani.

  1. Konstruiraj tretjo krožnico, ki se dotika obeh.
  2. Konstruiraj četrto krožnico, ki se prvi dve dotika od zunaj, tretje pa od znotraj (dve rešitvi).

Namig: Pri prvi nalogi lahko ugotoviš središče in polmer iskane krožnice že s premislekom, pri drugi pa je glavna težava določiti polmer 4. krožnice. Zato poveži središča vseh krogov, poglej, kje so trikotniki pravokotni od tam izrazi neznano. Upam, d ati bo v pomoč tudi spodnja animacija:

 

Hipokratovi luni

Povej, bistri bralec, kolikšna je skupna ploščina rumenih Hipokratovih lunic v animaciji? Stopaš po poti, ki so jo utrli Hipokrat iz Kiosa, ki je živel v 5. stol.pr.n.št. pa Alhazen okrog leta 1000 in tudi Leonardo da Vinci pet stoletij kasneje. Rezultat je skozi stoletja  vzbujal modrecem  upanje , da je kvadratura kroga morda možna….

Več pa lahko zveš v naslednjem članku. Kolikšna pa je ploščina spodnjih rumenih lun?

Potenca točke na krožnico

 

Imejmo  v ravnini krožnico K s središčem S in polmerom r ter poljubno točko O.  Potenca točke je definirana takole:

Def.:Potenca $\mathcal{P}(O,\mathcal{K})[$ točke O na krožnico [math]\cal{K}[/math] je število [math]\overrightarrow{OS}\cdot\overrightarrow{OS}-r^2. [/math]   Torej

$\mathcal{P}(O,\mathcal{K})=\overrightarrow{OS}\cdot\overrightarrow{OS}-r^2. $

Vidimo, da je zaloga vrednosti te preslikave enaka  $ \left [-r^2,\infty \right ).$ Točke izven kroga, ki ga omejuje krožnica [math]\mathcal{K}[/math], imajo potenco pozitivno, tiste znotraj pa negativno.

[embedit cf=”“]

Dokaz: Opazimo, da sta trikotnika OAD in OCB podobna, saj imata en kot skupen, drugi par kotov pa ima za zumanja obodna kota nad istim lokom.  Zato velja sorazmerje med enakoležnimi stranicami

[math]\frac{\overline{OA}}{\overline{OC}}=\frac{\overline{OD}}{\overline{OB}},[/math]
od tod pa sledi iskana enakost.

Zrcaljenje točke preko krožnice

Imejmo Krožnico in točko A zunaj nje.  Poiščimo zrcalno sliko A’  točke glede na dano krožnico.

Ravnamo takole:

  1. Na krožnici izberemo poljubno točko D in narišemo polmer SD,
  2. Narišemo simetralo daljice AD,
  3. Narišemo tangento na krožnico v točki D,
  4. narišemo krožnico s središčem v presečišču S’ simetrale in tangente in polmerom S’A.
  5. Iskana točka A’ je presečišče daljice SA in nove krožnice.

 

Tangente(2)

Konstrukcija tangent na dve dani krožnici poteka takole:

  1. Narišemo premico p skozi središči obeh krožnic,
  2. skozi središče 1. krožnice narišemo poljubno premico, skozi središče druge pa k tej premici vzporednico,
  3. skozi presečišča premic s krožnicama narišemo premico q. Ta seka premico  v točki  M,
  4. skozi središče vsake od krožnic narišemo pravokotnico na q. Dobimo dotikališči tangent na krožnico.
  5. Podobno konstruiamo tudi drugi par tangent, ki ima presečišče med krožnicama.

Ali nas Pitagorov izrek lahko preseneti?

Pitagorov izrek poznamo vsi še iz osnovne šole. Kljub temu  nas spodnji prikaz utegne presenetiti.

 

This is a Java Applet created using GeoGebra from www.geogebra.org – it looks like you don’t have Java installed, please go to www.java.com

Vincenc Petruna, Created with GeoGebra

  • Ustavi animacijo in preveri, ali je vsota ploščin enakostraničnih trikotnikov nad katetama pravokotnega trikotnika enaka ploščini enakostraničnega trikotnika nad hipotenuzo.
  • Preveri še, ali to velja tudi za pravilne petkotnike in šestkotnike.
  • Ali trditev velja za poljubne pravilne n-kotnike?
  •  Ali velja celo za kroge s premeri, ki so enaki stranicam trikotnika?
  • Utemelji svoje trditve tudi z računom.

Morleyev izrek

Geogebra, trisekcija kota in Morleyev izrek

Trije matematični problemi – kvadratura kroga, podvojitev kocke in trisekcija kota
so burili matematične duhove vse od stare Grčije naprej in šele v 19. stoletju so matematiki dokazali, da so ti problemi nerešljivi.Tu se posvetimo samo zadnjemu -trisekciji kota.
Naloga zahteva, da le s šestilom in neoznačenim ravnlom razdelite poljuben kot na tri dele. Izkaže se in tudi dokazali so, da je naloga z omenjemi orodji nerešljiva. Rešljiva pa postane že, če na ravnilu lahko označimo eno samo točko.

Programi za dinamično geometrijo pa lahko kakšno vrednost tudi izračunajo, zato je z njimi trisekcija kota mogoča.

Zanimivo je, da je F.Morley leta 1899 postavil in 15 let pozneje tudi dokazal naslednji izrek: Če v poljubnem trikotniku razdelimo vse kote na tri dele, se sosednji kraki tretinskih kotov sekajo v ogliščih enakostraničnega trikotnika.

Naloga: Število poleg trikotnika kaže razmerje med ploščinama obeh trikotnikov. Premakni oglišča trikotnika ABC tako, da bo razmerje največje. Kakšen je tedaj trokotnik ABC in kolikšen del njegove ploščine znaša ploščina notranjega enakostraničnega trikotnika DEF?

V.Petruna 21.junij 2008, 8 September 2014, Narejeno z GeoGebro

Kljub temu, da je o Morleyevem izreku precej napisanega, nisem nikjer naletel na zvezo med ploščinama obeh trikotnikov. Največje število, ki dobim na 6 decimalk, je 0,34188. Izziv za sedanji rod?

Ptolomejev izrek

Moj učitelj dr. France Križanič je bil plodovit pisec matematične literature – poleg strokovnih del je napisal tudi učbenike za gimnazije – slavno AAA – Aritmetiko, algebro in analizo – ter neke vrste zgodovino matematike z naslovom Nihalo, prostor in delci. Iz nje povzemam dokaz Ptolomejevega izreka o tetivnem štirikotniku (Claudius Ptolemaeus (grško: Κλαύδιος Πτολεμαῖος; 83 – 161, grški in egipčanski matematik in geograf.)

Ptolomejev izrek z dokazom najdete tu.

Tudi naloga za bralca, ki je dokazal Ptolomejev izrek,  je iz te knjige:

Nariši krožnico s premerom 1 in ji včrtaj  štirikotnik, ki ima za premer diagonalo e.  Izberi oglišče, v katerega sega diagonala e in označi kota, ki nastaneta ob diagonali v tem oglišču, z α in β.
Izrazi s kotoma vse 4 stranice štirikotnika, za izražanje diagonale f pa uporabi enega od dveh najbolj uporabljanih izrekov  v trikotniku.  Nazadnje uporabi še Ptolemejev izrek, pa dobiš znani izrek iz trigonometrije.