PTR v srednji šoli(9)

Lorenzove transformacije lahko zapišemo v kompaktnejši matrični obliki:

    \[ \begin{bmatrix}ct\\x\end{bmatrix}=\begin{bmatrix}\gamma&\gamma\beta\\\gamma\beta&\gamma\end{bmatrix}\begin{bmatrix}ct^\prime\\x^\prime\end{bmatrix} \]

V njej nastopa Lorenzova matrika

    \[ \begin{bmatrix}\frac{1}{\sqrt{1-\beta^2}}&\frac{\beta}{\sqrt{1-\beta^2}}\\\frac{\beta}{\sqrt{1-\beta^2}}&\frac{1}{\sqrt{1-\beta^2}} \end{bmatrix}\quad\quad\quad(1) \]

Prvo koordinato v levem vektorju enačbe (1) dobimo tako, da skalarno pomnožimo 1. vrstico matrike z desnim vektorjem in podobno tudi 2. koordinato. Pred matriko je relativistični faktor.

Opazimo, da se s svetlobno hitrostjo c pomnoženi čas v zapisu obnaša tako kot koordinata x. Če pišemo še koordinati y in z, ki sta prečni na smer gibanja, dobimo

    \[ \begin{bmatrix} ct\\x\\y\\z \end{bmatrix}= \begin{bmatrix} \gamma& \gamma\beta&0&0\\\gamma\beta&\gamma&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix}\begin{bmatrix} ct^\prime\\x^\prime\\y^\prime\\z^\prime\end{bmatrix} \]

Seveda tudi tu velja, da dobimo i-to komponento levega vektorja tako, da skalarno pomnožimo i-to vrstico matrike z desnim vektorjem. Še obratna Lorenzova transformacija:

    \[ \begin{bmatrix}ct^\prime\\x^\prime\\y^\prime\\z^\prime \end{bmatrix}= \begin{bmatrix} \gamma& -\gamma\beta&0&0\\-\gamma\beta&\gamma&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix}\begin{bmatrix}ct\\x\\y\\z \end{bmatrix} \]

Relacije nam ponujajo odgovor na vprašanje, kaj je čas. Čas je pač ena od koordinat štirirazsežnega prostora-časa. Vektorju

    \[ \begin{bmatrix} ct\\x\\y\\z \end{bmatrix}\]

pravimo dogodek  v prostoru- času. Lorentzove transformacije nam pomagajo preračunavati dogodke iz enega v drug inercialni sistem v prostoru-času.

PTR v srednji šoli(4)

NOVE TRANSFORMACIJE

Iščemo torej linearno transformacijo, ki prevede točko (u,v) v točko (u^\prime,v^\prime) tako, da  velja zveza
u^{\prime 2}-v^{\prime 2}=u^2-v^2.
Ker je transformacija linearna,  jo iščemo v obliki
u=Au^\prime +Bv^\prime \qquad v=Cu^\prime +Dv^\prime ,
pri čemer so A, B,C in D konstante, ki jih je treba določiti. Vstavimo zato te transformacije v zgornjo enačbo, pa dobimo
(Au^\prime+Bv^\prime )^2-(Cu^\prime+Dv^\prime )^2=u^{\prime2}-v^{\prime 2}.
Po kvadriranju in primerjanju koeficientov dobimo naslednje enačbe
A^2-C^2=1,\quad AB=CD, \quad C^2-D^2=-1.
Imamo torej tri enačbe in štriri neznanke. Zato uvedemo parameter
\beta=\frac{C}{A}=\frac{B}{D}
ter z njim izrazimo vse koeficiente. Dobimo
A=D=\frac{1}{\sqrt{1-\beta^2}},\quad B=C=\frac{\beta}{\sqrt{1-\beta^2}}
Iskane transformacije so torej
u=\frac{u^\prime+\beta v^\prime}{\sqrt{1-\beta^2}},\quad v=\frac{\beta u^\prime+v^\prime}{\sqrt{1-\beta^2}},
obratne transformacije pa
u^\prime=\frac{u-\beta v}{\sqrt{1-\beta^2}},\quad v^\prime=\frac{-\beta u+v}{\sqrt{1-\beta^2}}.
Naslednjič pa jim bomo dali fizikalni pomen.