Stewartov izrek

Imejmo trikotnik ABC in na stranici $c$ poljubno točko $D.$  Zveznico $\overline{CD}$ označimo z $d$. Med geometrijskimi izreki, ki se jih v srednji šoli običajno preskoči, je tudi Stewartov izrek 

Izrek trdi naslednje:

$$m^2a+n^2b=c(d^2+mn).$$

Dokaz: Kota $\angle ADC$ in $\angle CDB$ sta suplementarna, označimo ju z $\varphi$ in $180^o-\varphi.$ Ker je $\cos(\varphi)=-cos(180^o-\varphi),$  zapišemo za levi in desni trikotnik cosinusov izrek

$$\frac{d^2+m^2-b^2}{2dm}=-\frac{d^2+n^2-a^2}{2dn}.$$

Preuredimo in dvakrat upoštevamo $m+n=c,$ pa res pridemo do navedenega izreka.

Naloga:

  1. Zapiši ta izrek za enakokrak trikotnik.
  2. Dokaži Stewartov izrek samo s Pitagorovim izrekom! Namig: Najprej na skici potegni pravo črto!
Ta vnos je objavil Vinc v Geogebrine,Geometrija,Razno,šola in zaznamoval z ,, . Dodaj zaznamek do trajne povezave .

O Vinc

Končal gimnazijo v Črnomlju 1971, pričel honorarno poučevati na tej gimnaziji v šol.letu 1973/74, se v šol. letu 1976/77 zaposlil kot učitelj matematike, leta 1978 diplomiral iz pedagoške matematike pri dr. Niku Prijatelju s temo Galoisova teorija. Na gimnaziji in poklicni kovinarski šoli učil matematiko, fiziko in računalništvo ter informatiko, dokumentaristiko in arhivistiko. Dolgoletni mentor šahovskega, fotografskega, fizikalnega, računalniškega in<a \href{http://www2.arnes.si/48/sscrnomelj/astro.html}{ astronomskega} krožka. Absolvent 3. stopnje pedagoške fizike, v 90. letih član skupine za prenovo gimnazijske fizike, avtor programske opreme za merilno krmilni vmesnik, soavtor učbenikov za gimnazijo Fizika-Mehanika in Fizika-Elektrika. Mentor trinajstim raziskovalnim nalogam v okviru Gibanja Znanost mladini ter trem raziskovalnim nalogam v okviru Krkinih nagrad in številnim tekmovalcem iz logike, matematike, fizike in računalništva. Mentor \href{http://www2.arnes.si/48/ssnmcrnom5/sola/}{2. spletne strani šole}, pobudnik in od 2007 do 2010 urednik spletnih učilnic Srednje šole Črnomelj. Pobudnik šolske Facebook strani. Več najdete na njegovi \href{http://vincenc.petruna.com/}{spletni strani.}