NOVE TRANSFORMACIJE
Iščemo torej linearno transformacijo, ki prevede točko $(u,v)$ v točko $(u^\prime,v^\prime)$ tako, da velja zveza
$$u^{\prime 2}-v^{\prime 2}=u^2-v^2.$$
Ker je transformacija linearna, jo iščemo v obliki
$$u=Au^\prime +Bv^\prime \qquad v=Cu^\prime +Dv^\prime ,$$
pri čemer so A, B,C in D konstante, ki jih je treba določiti. Vstavimo zato te transformacije v zgornjo enačbo, pa dobimo
$$(Au^\prime+Bv^\prime )^2-(Cu^\prime+Dv^\prime )^2=u^{\prime2}-v^{\prime 2}.$$
Po kvadriranju in primerjanju koeficientov dobimo naslednje enačbe
$$A^2-C^2=1,\quad AB=CD, \quad C^2-D^2=-1.$$
Imamo torej tri enačbe in štriri neznanke. Zato uvedemo parameter
$$\beta=\frac{C}{A}=\frac{B}{D}$$
ter z njim izrazimo vse koeficiente. Dobimo
$$A=D=\frac{1}{\sqrt{1-\beta^2}},\quad B=C=\frac{\beta}{\sqrt{1-\beta^2}}$$
Iskane transformacije so torej
$$u=\frac{u^\prime+\beta v^\prime}{\sqrt{1-\beta^2}},\quad v=\frac{\beta u^\prime+v^\prime}{\sqrt{1-\beta^2}},$$
obratne transformacije pa
$$u^\prime=\frac{u-\beta v}{\sqrt{1-\beta^2}},\quad v^\prime=\frac{-\beta u+v}{\sqrt{1-\beta^2}}.$$
Naslednjič pa jim bomo dali fizikalni pomen.