Geometrijska z diofantskim pridihom

Andrej je objavil naslednjo nalogo:

Če brez prekrivanja dodamo v vogal trikotnika še dva mnogokotnika, dobimo zgornjo skico. Ali lahko to naredimo še s kakšnim parom mnogokotnikov, od katerih bi imel eden več stranic?

Rešitev: Spomnimo se, da je velikost notranjega kota v pravilnem n-kotniku enaka (n-2)\frac{180^o}{n} ali v radianih (n-2)\frac{\pi}{n}, pa lahko za kot v skupnem oglišču večkotnikov zapišemo

    \[\frac{\pi}{3}+(m-2)\frac{\pi}{m}+(n-2)\frac{\pi}{n}=2\pi.\]

Po ureditvi dobimo lepo diofanstko enačbo

    \[mn-6m-6n=0.\qquad(1)\]

Iščemo torej taki naravni števili m in n, ki tej enačbi zadoščata. Prištejmo na obeh straneh enačbe 36 in levo stran razcepimo. Dobimo

    \[(m-6)(n-6)=36\]

Na levi strani enačbe sta dva faktorja, torej morata biti tudi na desni dva. Ker je

    \[36=1\cdot36=2\cdot 18=3\cdot 12=4\cdot 9=6\cdot 6,\]

vidimo, da so rešitve enačbe (1) naslednji pari (m,n):

    \[(7,42),\quad (8,24),\quad (9,18),\quad (10,15),\quad(12,12).\]

Na zgornji skici je narisana srednja rešitev, devetkotnik  in osemnajstkotnik. Možnosti sta torej še dve: osemkotnik  in štiriindvajsetkotnik ter sedemkotnik in dvainštiridesetkotnik.

Stewartov izrek

Imejmo trikotnik ABC in na stranici c poljubno točko D.  Zveznico \overline{CD} označimo z d. Med geometrijskimi izreki, ki se jih v srednji šoli običajno preskoči, je tudi Stewartov izrek 

Izrek trdi naslednje:

    \[m^2a+n^2b=c(d^2+mn).\]

Dokaz: Kota \angle ADC in \angle CDB sta suplementarna, označimo ju z \varphi in 180^o-\varphi. Ker je \cos(\varphi)=-cos(180^o-\varphi),  zapišemo za levi in desni trikotnik cosinusov izrek

    \[\frac{d^2+m^2-b^2}{2dm}=-\frac{d^2+n^2-a^2}{2dn}.\]

Preuredimo in dvakrat upoštevamo m+n=c, pa res pridemo do navedenega izreka.

Naloga:

  1. Zapiši ta izrek za enakokrak trikotnik.
  2. Dokaži Stewartov izrek samo s Pitagorovim izrekom! Namig: Najprej na skici potegni pravo črto!