Zapiski iz elektrostatike

uvod

Včasih je bila pri pouku matematike in fizike v srednji šoli (beri gimnaziji) navada, da je vsa ali vsaj večina obravnavane snovi pri matematiki temeljila na izpeljavi, pri fiziki pa na poskusih, ki so potrdili naravne zakone, in izpeljavah iz teh poskusov.  Z leti pa se je marsikaj spremenilo. Predvsem se je na ladjo gimnazija vkrcalo približno štirikrat več potnikov kot prej.  Le-tem se je izpeljevanje zdelo duhamorno, matematika in fizika pa (pre)težka predmeta. Oblasti so pričele iskati možnosti poenostavitve programov in to počnejo še sedaj.  Tako so npr. izpeljave iz fizike skoraj izginile, nadomestilo jih je piflanje formul. Posledica vseh teh prenov je,  da naloge iz nekdanjih matur reši le peščica dijakov.  Uvajajo se nove nepreverjene oblike, kot so timski pouk z več učitelji v razredu, ki so zapravljanje davkoplačevalskega denarja, saj bi moral po mojem mnenju povezovanje med predmeti. izvajati učitelj sam.  Resne evalvacije teh posodobitev nisem zasledil.

V spodnjem prispevku želim prikazati  možno povezavo med matematiko in fiziko. Potrebno predznanje so vektorji, sile in električno polje.

 Električni pretok

Imejmo v prostoru električno polje E in ploskev S.  Silnice električnega polja prebadajo ploskev, zato uvedemo električni pretok \Phi_e, ki je odvisen od jakosti električnega polja \vec{E}, velikosti S in kota \varphi med pravokotnico (normalo) na S in silnicami polja.

Screen Shot 08-26-15 at 11.40 AM

Torej

\Phi_e=\epsilon_o ES\cos{\varphi},\qquad (\frac{As}{Vm}\cdot\frac{V}{m}\cdot m^2=As)

pri čemer je \epsilon_o influenčna konstanta. Če priredimo ploskvi S vektor \vec{S}, ki ima velikost  S in smer normale na S, lahko zgornjo definicijo zapišemo bolj kompaktno kot skalarni produkt

\Phi_e=\epsilon_o\vec{E}\cdot\vec{S}.

Električni pretok točkastega naboja skozi koncentrično kroglo

Ugotovimo sedaj, kolikšen je električni pretok \Phi_e skozi kroglo polmera r, ki ima v središču točkast naboj e. Naj bo predznak naboja pozitiven, Ker je jakost električnega polja v okolici tega naboja vektor, moramo določiti njegovo velikost in smer. Oboje ugotovimo tako, da po prostoru okrog tega naboja premikamo (majhen) pozitivni testni naboj e_t in iz smeri električne sile ugotavljamo smer vektorja \vec{E}, pomočjo Couloumbovega zakona pa njegovo velikost

Velja namreč

E=\frac{F_e}{e_t}=\frac{ee_t}{4\pi\epsilon _or^2e_t}=\frac{e}{4\pi\epsilon _or^2}.

Vidimo torej, da imajo silnice električnega polja pozitivnega točkastega naboja radialno smer navzven in da jakost tega polja pada s kvadratom razdalje od naboja.

Razdelimo sedaj celotno našo kroglo, v kateri je zaprt naboj, na majhne ploskvice \overrightarrow{dS}.  To so vektorji, ki imajo smer pravokotno na posamezno ploskev,  velikost pa imajo enako ploščini te ploskve. Električni pretok d\Phi_e skozi eno tako ploskev znaša torej

d\Phi_e=\epsilon_o\vec{E}\cdot\overrightarrow{dS}=\epsilon_oEdS.

Pri računanju zgornjega sakalrnega produkta smo upoštevali, da silnice električnega polja prebadajo celotno površino krogle pravokotno, zato sta sta \vec{E} in pripadajoči \overrightarrow{dS} za vse ploskvice kolinenarna.

Električni pretok \Phi_e skozi celotno kroglo bomo dobili, če seštejemo  električne pretoke d\phi_e skozi vse ploskve \overrightarrow{dS}.  Pri seštevanju majhnih količin je navada, da vsoto označimo z znakom \int, ki mu pravimo tudi integralski znak, celoten izraz pa imenujemo integral.

Torej

\Phi=\int\limits_{S}d\Phi_e=\epsilon_o\int\limits_{S}\vec{E}\cdot\overrightarrow{dS}=\epsilon_o\int\limits_{S}EdS=

Upoštevajmo, da je velikost lakosti električnega polja skozi vse ploskvice enaka, pa dobimo:
=\epsilon_o \frac{e}{4\pi \epsilon_o r^2}\int\limits_{S}\overrightarrow{dS}=\epsilon_o \frac{e}{4\pi \epsilon_o r^2}\cdot 4\pi r^2=e.

Nazadnje smo upoštevali, da lahko E izpostavimo pred  vsoto in da je vsota ploščin vseh ploskvic enaka površini celotne krogle.

Naš ugotovitev je torej naslednja: Električni pretok točkastega naboja skozi kroglo, ki ima ta naboj v središču, je kar enak vsebovanemu naboju,.

zakon o električnem pretoku

Karl Friderik Gauß je to ugotovitev še dopolnil takole: Električni pretok skozi poljubno zaprto ploskev je enak vsoti nabojev znotraj te ploskve. (Zakon o električnem pretoku.)  zakon je v elektriki zelo pomemben, je prva od štirih Maxwellovih enačb. Povemo ga lahko na različne načine, morda najpreprostejša oblika je naslednja: Izviri (in ponori) električnega polja so naboji.

Primeri uporabe

Zakon o električnem pretoku nam omogoča preprosto izračunati jakost električnega polja v nekaterih primerih, seveda če si pametno izberemo zaprto ploskev v kateri je naboj. Poglejmo primere.

JAKOST ELEKTRIČNEGA POLJA nabite prevodne krogle

Prevodno kroglo nabijemo s pozitivnim nabojem. Naboj se porazdeli enakomermo po površini krogle tako, da imajo silnice električnega polja radialno smer in na vsej površini krogle enako velikost. Najprej določimo njegovo jakost zunaj krogle:

Screen Shot 07-27-15 at 07.13 PM

Zapišemo torej zakon o električnem pretoku za ta primer:

\Phi_e=\epsilon_o\int\limits_S\vec{E}\cdot\overrightarrow{dS}=\epsilon_oE\int\limits_SdS=\epsilon_oE\cdot 4\pi r^2=e,

od koder sledi

E=\frac{e}{4\pi \epsilon_or^2.}

Kaj pa znotraj krogle?

Screen Shot 07-27-15 at 07.14 PM

Sedaj pa je

\Phi_e=\epsilon_o\int\limits_S\vec{E}\cdot\overrightarrow{dS}=0,

saj znotraj naše krogle ni naboja. To pa gre le, če je E=0.

Za električno polj nabite prevodne krogle velja torej

E=\begin{cases}\frac{e}{4\pi\epsilon_or^2} &\mbox{;}\qquad r\geq R\\0&\mbox{;}\qquad r<R\end{cases}

 

Jakost električnega polja neskončne nabite plošče

Vzemimo sedaj veliko nabito kovinsko ploščo površine S_o, na katero pretočimo (pozitivni) naboj e. SIlnice na sredini plošče so  vzporedne in neako goste, pravimo, da je tako polje homogeno. Uvedemo gostoto naboja \sigma kot naboj, vsebovan na enoti ploskve, torej

\sigma=\frac{e}{S} \qquad (\frac{As}{m^2})

Ploskev, v katero sedaj zapremo del naboja, pa naj bo zaradi oblike polja kvader s stranicami 1,2,3,4, sprednjo 5 in zadnjo 6.

Screen Shot 07-28-15 at 08.39 AMElektrični pretok skozi celotno ploskev je enak tistemu skozi posamezne ploskve tega kvadra in znaša

\Phi_e=\epsilon_o\int\limits_S\vec{E}\cdot\overrightarrow{dS}=\epsilon_o\int\limits_1EdS+\epsilon_o\int\limits_2EdS+\epsilon_o\int\limits_30dS+\epsilon_o\int\limits_40 dS+\epsilon_o\int\limits_50dS+\epsilon_o\int\limits_60dS=e=\sigma S.

Pri tem je S osnovna ploskev kvadra. Upoštevali smo, da je na nekaterih ploskvah skalarni produkt 0. Dobimo torej

2\epsilon_oES=\sigma S

in rezultat

E=\frac{\sigma}{2\epsilon_o}.

jakost električnega polja znotraj neskončnega ploščatega kondenzatorja

Nazadnje izračunajmo še jakost električnega polja velikega ploščatega kondenzatorja, na katerem je naboj s ploskovno gostoto naboja \sigma.  Polje prikazuje spodnja skica, vidimo, da je razen ob robovih plošč to polje spet homogeno.

Screen Shot 07-30-15 at 10.45 AM

Del pozitivne plošče spet zapremo v kvader z osnovno ploskvijo S, nato pa tako kot prej računamo električne pretoke skozi njegove stranice. Dobimo

\Phi_e=\epsilon_o\int\limits_S\vec{E}\cdot\overrightarrow{dS}=\epsilon_o\int\limits_10dS+\epsilon_o\int\limits_2EdS+\epsilon_o\int\limits_30dS+\epsilon_o\int\limits_40 dS+\epsilon_o\int\limits_50dS+\epsilon_o\int\limits_60dS=e=\sigma S,

torej

2\epsilon_oES=\sigma S

in nazadnje

E=\frac{\sigma}{\epsilon_o}.

Zaključek

Zgornji primeri kažejo, kako se da tudi v srednji šoli uporabiti povezati fiziko z matematiko. Če se vektorji pri matematiki jemljejo v drugem letniku, elektrika pri fiziki v tretjem in integrali v četrtem (v Križaničevih učbenikih so se v drugem!), lahko fizik v tretjem letniku uporabi matematično znanje iz drugega, obenem pa leto pred matematično obravnavo poda predstavo o določenem integralu in te preproste primere tudi izračuna.

 

Fizik in fotografija

Večino ljudi zanimajo naravni pojavi, kot so npr. mavrica, zarja in zora, slikoviti slapovi rek, ipd. Zdijo se jim zanimivi, zato jih poskušajo ovekovečiti s fotoaparatom ali kamero, da bi jih pokazali prijateljem in znacem. Koliko informacij pa ponuja fotografija? Gotovo je to odvisno od vsebine fotografije, seveda pa tudi od gledalca. Vzemimo na primer naslednjo fotografijo para.jpg Večina ljudi bo opazila motorni čoln, ki vleče padalca, morje in hribe (Cres) v ozadju, spomnili se bodo na poletje in počitnice, najbolj dovzetni bodo celo zaznali vonj po borovcih in morju. Pa je to vse, kar lahko izluščimo iz te fotke? Fizik (pa tudi forenzik, ki med drugim uporablja tudi fizikalne metode) pravi, da ne. Ve, da za objekte na fotografiji veljajo naravni zakoni, ki omogočajo globji pogled in določitev ene ali več fizikalnih količin. Zato to fotografijo uvozi v kak program, za  šolarje je več kot primerna Geogebra, in nariše sile, ki delujejo na padalca (bolj precizno na točko, kjer se stikata vrv čolna, padalo in vrv, na kateri visi padalec). Najprej nariše silo padalca F_g, ki je po velikosti in smeri enaka njegovi teži in jo oceni (skupaj s padalom in vrvjo) na F_g=1000N. Nato nariše še preostali sili, silo vrvi F_v v smeri vrvi, s katero vleče čoln, in silo upora padala F_u, ki kaze v smer simetrijske osi padala. Smeri sil so tako določene, velikosti pa mu pomaga določiti 1. Newtonov zakon, ki pravi, da je vektorska vsota sil, ki delujejo na enakomerno gibajoče se telo, enaka 0, torej

    \[\vec{F_g}+\vec{F_u}+\vec{F_v}=\vec{0}.\]

para5 V praksi to pomeni, da sile lahko vzporedno premaknemo v trikotnik in kar z merjenjem (ročno ali bolj natančno z Geogebro) določimo velikost preostalih dveh sil. Narisane sile v Geogebri. para7   Tako je torej fizik določil velikosti vseh sil, ki delujejo na njihovo stično točko. A zgodbe še zdaleč ni konec. Upoštevamo namreč še, da je velikost sile upora po kvadratnem zakonu premo sorazmerna s kvadratom hitrosti gibanja skozi zrak, natančneje

    \[F_u=c_uS\frac{\rho v^2}{2}.\]

Pri tem je c_u koeficient upora, S  presek padala, \rho=1,2kg/m^3 gostota zraka in v hitrost zraka v smeri geometrijske osi padala. Ocenimo npr. S=20m^2 in c_u=1, pa lahko iz zgornje formule izračunamo hitrost v:

    \[v=\sqrt{\frac{2F_u}{c_u\rho S}}=13\frac{m}{s}.\]

Čoln se mora torej gibati s hitrostjo v_c=v\cos{50^o}=8,3m/s=30km/h.   Zvemo lahko tudi minimalno moč P_1, ki jo čoln potrebuje za vleko padalca. Pri enakomernem gibanju namreč velja

    \[P_1=\vec{F}\cdot \vec{v}=F_vv_c\cos{23^o}=12kW.\]

Morda pa se da iz fotografije izvedeti še kaj. Če k tej moči prištejemo še moč P_2, ki jo čoln potrebuje za premikanje po morju

    \[P_2=c_{uc}S_c \frac {\rho_v v_{c}^3}{2}=0,2\cdot 3m^2 \cdot \frac{1000kg} {m^2 } \cdot \frac{70 m^2} {2s^2}\cdot 8,3\frac{m}{s}=57kW,\]

(ocenili smo koeficient upora c_{uc}=0,1 in prečni presek čolna S_c=2m^2) ugotovimo, da mora biti moč motorja P na čolnu približno

    \[P=P_1+P_2=79kW.\]

Zanimivo, večino moči porabi čoln za premikanje po morju, samo slabo  šestino pa za držanje padalca v zraku.

Seveda fotka skriva še več informacij. Morda bi koga zanimalo, kdaj in kje je bila posneta. A to ni več zelo fizikalna tema…

Fuzbalska lestvica

 

Na evropskem in svetovnem prvenstvu v nogometu so reprezentance razvrščene v skupine po 4 in odigrajo med seboj vsaka z vsemi, torej vsaka 3 tekme, skupaj 6 tekem. Za zmago dobi ekipa 3 točke, za neodločen rezultat eno, ob porazu pa ostane brez točk. Ekipi, ki v skupini zbereta največ točk, se uvrstita v nadaljnje tekmovanje, preostali pa odpotujeta domov.

Vprašajmo se, kakšni so možni točkovni izidi po koncu tekem v skupini. Na misel nam pride, da je eden od možnih izdov osvojenih točk   npr. 9,6,3,0, kar pomeni, da ni bilo nobenega neodločenega rezultata, temveč same zmage,  in da je prva ekipa premagala ostale tri, druga izgubila s prvo, premagala pa ostali, tretje je izgubila z ekipama pred njo, premagala pa zadnjo in nazadnje četrta ekipa je izgubila vse tekme. Pri tem izidu je bilo v skupini razdeljeno maksimalno, 18 točk. Ni pa to edina taka možnost, preostali sta še npr. 9,3,3,3 ali 6,6,6,0.

Drug skrajni primer so sami remiji, torej 3,3,3,3. V tem primeru je bilo v skupini podeljeno minimalno, torej 12 točk.

Zanima nas, koliko je vseh možnih izidov osvojenih točk v skupini po koncu teh tekem. V skupini so 4 ekipe in vsaka igra z vsako, torej je skupaj C_4^2={4 \choose 2}=6 tekem. Ker so na vsaki tekmi tri možnosti izida, je po osnovnem izreku kombinatorike N=^{\left(p\right)}\hspace{-1.8mm} V_6^3=3^6=729 vseh možnosti. A število različnih izidov je dosti manjše, saj moramo odšteti njihove permutacije (npr 0,9,6,3 da isti izid kot 9,6,3,0). Imamo kar zapleten kombinatoričen problem. Namesto da bi ga rešili matematično, raje napišimo program, ki bo simuliral število točk po vseh možnih izidih teh tekem. Najprej sestavimo niz vseh izidov, nato pa izide v njem sortiramo in različne prepišemo v novi niz. V Pythonu gre to skoraj tako kot v slovenščini.

Koda programa zgleda takole:

#Program ugotovi vse različne možnosti osvojitve točk 
#v skupini 4 moštev.
#Medsebojnih tekem je 6, zmagovalec, dobi 3 točke, poraženec 0,
# v primeru
#neodločenega rezultata pa si moštvi razdelita 2 točki.
# V Petruna, junij 2014
x=3
y=0
z=1
izidi=[]
izid2=[]
for i in range(3):    
    for ii in range(3):
        for iii in range(3):
            for i4 in range(3):
                for i5 in range(3):
                    for i6 in range(3):
                        a=0
                        b=0
                        c=0
                        d=0
#simulacija izida na posamezni tekmi
                        if i==0:a=a+x;b=b+y
                        else:
                            if i==1:a=1;b=1
                            else:a=a+y;b=b+x

                        if ii==0:a=a+x;c=c+y
                        else:
                            if ii==1:a=a+1;c=c+1
                            else:a=a+y;c=c+x

                        if iii==0:a=a+x;d=d+y
                        else:
                            if iii==1:a=a+1;d=d+1
                            else:a=a+y;d=d+x   

                        if i4==0:b=b+x;c=c+y
                        else:
                            if i4==1:b=b+1;c=c+1
                            else:b=b+y;c=c+x

                        if i5==0:b=b+x;d=d+y
                        else:
                            if i5==1:b=b+1;d=d+1
                            else:b=b+y;d=d+x    

                        if i6==0:c=c+x;d=d+0
                        else:
                            if i==1:c=c+1;d=d+1
                            else:c=c+0;d=d+x

                        izi=[a,b,c,d]
                        izid=sorted(izi,reverse=True)                    
#tvorimo niz vseh izidov
                        izidi.append(izid)
#izločanje podvojenih
for i in range (len(izidi)):       
    if (izidi[i] not in izid2):
        izid2.append(izidi[i])       
izidis=sorted(izid2,reverse=True)
#računanje vsote točk v skupini
for i in range(len(izid2)):
    vsota=izidis[i][0]+izidis[i][1]+izidis[i][2]+izidis[i][3]
    izidis[i].insert(0,vsota)
#izpis števila vseh različnih možnosti
print "VSEH RAZLIČNIH MOŽNOSTI = ",len(izidis)
izidiss=sorted(izidis,reverse=True)
#izpis vseh različnih možnosti, urejenih po številu doseženih točk v skupini
for i in range(len(izidiss)):
    for j in range(5):
        print izidiss[i][j],"  ",
    print

Rezultat, ki ga dobimo, je naslednji:

18    9    6    3    0   
18    9    3    3    3   
18    6    6    6    0   
18    6    6    3    3   
17    9    6    1    1   
17    9    4    4    0   
17    9    4    3    1   
17    7    7    3    0   
17    7    6    4    0   
17    7    6    3    1   
17    7    4    3    3   
17    6    6    4    1   
17    6    4    4    3   
16    9    4    2    1   
16    7    7    1    1   
16    7    6    2    1   
16    7    5    4    0   
16    7    5    3    1   
16    7    4    4    1   
16    7    4    3    2   
16    6    5    4    1   
16    6    4    4    2   
16    5    4    4    3   
16    4    4    4    4   
15    9    2    2    2   
15    7    5    2    1   
15    7    4    3    1   
15    7    4    2    2   
15    6    5    2    2   
15    5    5    5    0   
15    5    5    4    1   
15    5    5    3    2   
15    5    4    4    2   
15    4    4    4    3   
14    7    3    2    2   
14    5    5    3    1   
14    5    5    2    2   
14    5    4    3    2   
13    5    3    3    2   
12    3    3    3    3

Opazimo torej, da je vseh možnih različnih izidov 40.

Zgornja tabela možnih točkovnih izidov po koncu tekmovanja v skupini pokaže nekaj zanimivosti. Možno je npr. napredovati samo z dvema remijema, ali zapustiti tekmovanje kljub dvem zmagam.  V prvem primeru ima drugovrščena ekipa samo 2 točki, v drugem pa tretjeuvrščena 6 točk (poišči v tabeli ta primera).  Tudi v zadnjem primeru, ko so tekmeci izenačeni, dva nadaljujeta, dva pa končata s tekmovanjem.

Tega dejstva ne  spremenijo niti dodatna pravila za napredovanje, ki so:

  1. točke
  2. razlika v golih (na vseh tekmah skupine)
  3. število doseženih golov (na vseh tekmah skupine)
    Če sta dve ali več reprezentanc še vedno izenačeni, se začne gledati medsebojne tekme!
  4. točke na medsebojni(h) tekmi(ah);
  5. razlika v golih na medsebojnih tekmah;
  6. število doseženih golov na medsebojnih tekmah;
  7. število točk ferpleja: rumeni karton -1 točka, drugi rumeni karton -3, neposredni rdeči karton -4, rumeni karton in neposredni rdeči karton
  8. žreb

 

Vidi se torej, da je kljub točkovanju zelo pomembna tudi sreča.

Signal

Po Fourierju lahko vsako periodično funkcijo zapišemo kot vsoto ali vrsto drugih periodičnih funkcij.
Animavija kaže, kako pravokoten signal lahko  kot vsoto sinusov tem bolj natančno, čim več členov  vsota vsebuje.

Premikaj drsnik.

Generator pravokotne in trikotne napetosti

Skoraj poljubna periodična funkcija se lahko izrazi kot neskončna vsota sinusov in cosinusov. Postopku pravimo razvoj funkcije v Fourierovo vrsto. Približek funkcije pa dobimo, če seštejemo samo nekaj prvih členov vrste.

Na voljo imaš pet sinusnih napetosti, katerim lahko nastavljaš amplitudo in (krožno) frekcenco. Sestavi iz njih približka za:

  • pravokotno napetost
  • trikotno napetost.