Generator pravokotne in trikotne napetosti

Skoraj poljubna periodična funkcija se lahko izrazi kot neskončna vsota sinusov in cosinusov. Postopku pravimo razvoj funkcije v Fourierovo vrsto. Približek funkcije pa dobimo, če seštejemo samo nekaj prvih členov vrste.

Na voljo imaš pet sinusnih napetosti, katerim lahko nastavljaš amplitudo in (krožno) frekcenco. Sestavi iz njih približka za:

  • pravokotno napetost
  • trikotno napetost.

Radialni pospešek-izpeljava

Izpeljava radialnega pospeška krožečega telesa sodi vsaj v srednji šoli med težje razumljivo snov, ki zahteva kar dobro tako matematično kot fizikalno podlago – od matematike elementarni  vektorski račun, poznavanje limitnega procesa, radianov in formule za krožni lok, od fizike pa računanje s silami in formule pri kroženju.  Razumevanje nam utegne olajšati naslednja animacija

S to animacijo nazorno pokažemo, da količnik dveh poljubno majhnih količin v splošnem ni majhen. Pokažemo tudi tako smer kot velikost radialnega pospeška. Ne pozabi opaziti, da v limitnem procesu velikost razlike hitrosti \Delta v lahko zamenjamo z dolžino pripadajočega krožnega loka. Tako pridemo do velikosti radialnega pospeška

    \[a_r=lim_{\Delta t\to 0}{\frac{\Delta v}{\Delta t}}=lim_{\Delta t \to 0}{\frac{v\omega\Delta t}{\Delta t}}=\omega v=r\omega^2=\frac{v^2}{r}.\]