O Vinc

Končal gimnazijo v Črnomlju 1971, pričel honorarno poučevati na tej gimnaziji v šol.letu 1973/74, se v šol. letu 1976/77 zaposlil kot učitelj matematike, leta 1978 diplomiral iz pedagoške matematike pri dr. Niku Prijatelju s temo Galoisova teorija. Na gimnaziji in poklicni kovinarski šoli učil matematiko, fiziko in računalništvo ter informatiko, dokumentaristiko in arhivistiko. Dolgoletni mentor šahovskega, fotografskega, fizikalnega, računalniškega in<a \href{http://www2.arnes.si/48/sscrnomelj/astro.html}{ astronomskega} krožka. Absolvent 3. stopnje pedagoške fizike, v 90. letih član skupine za prenovo gimnazijske fizike, avtor programske opreme za merilno krmilni vmesnik, soavtor učbenikov za gimnazijo Fizika-Mehanika in Fizika-Elektrika. Mentor trinajstim raziskovalnim nalogam v okviru Gibanja Znanost mladini ter trem raziskovalnim nalogam v okviru Krkinih nagrad in številnim tekmovalcem iz logike, matematike, fizike in računalništva. Mentor \href{http://www2.arnes.si/48/ssnmcrnom5/sola/}{2. spletne strani šole}, pobudnik in od 2007 do 2010 urednik spletnih učilnic Srednje šole Črnomelj. Pobudnik šolske Facebook strani. Več najdete na njegovi \href{http://vincenc.petruna.com/}{spletni strani.}

Kriptovalute

Znana limita in njena uporaba

V srednji šoli se četrtošolci srečajo z limito

    \[\lim_{x\to 0}{\frac{\sin{x}}{x}}=1.\]

Dokaz najdejo v svojem učbeniku. Med primeri uporabe te limite pa pogosto umanjkata naslednja:

plošćina kroga

Imejmo krog s središčem T in polmerom r, po Arhimedovo mu včrtajmo n-kotnik. Le-ta je iz n skladnih enakokokrakih trikotnikov , njegova ploščina torej znaša

    \[S_n=nr^2\sin{\frac{\pi}{n}}\cos{\frac{\pi}{n}}=\frac{nr^2\sin{\frac{2\pi}{n}}}{2}.\]

Če večamo n, gre ploščina n-kotnika proti ploščini kroga, zato je ploščina kroga S enaka

    \[S=\lim_{n\to \infty}{S_n}=\frac{r^2}{2}\lim_{n\to\infty}{\frac{nr^2\sin{\frac{2\pi}{n}}}{2}}=  \frac{2\pi r^2}{2}\lim_{n\to\infty}{\frac{\sin{\frac{2\pi}{n}}}{\frac{2\pi}{n}}}\]

Uvedimo u=\frac{2\pi}{n} in opazimo, da ko gre n\to \infty, gre u\to 0, pa lahko pišemo

    \[S= \pi r^2\lim_{u\to 0}{\frac{\sin{u}}{u}}=\pi r^2.\]

Dokazali smo torej obrazec za ploščino kroga.

Izračun Ludolfovega Števila

Uporabimo večkrat obrazec za sinus dvojnega kota, pa dobimo produkt n faktorjev

    \[\sin{x}=2\sin{\frac{x}{2}}\cos{\frac{x}{2}}=\]

    \[=2^2\cos{\frac{x}{2}}\sin{\frac{x}{4}}\cos{\frac{x}{4}}=\dots\]

    \[\dots=2^n\sin{\frac{x}{2^n}}\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\dots\cos{\frac{x}{2^n}}.\]

Delimo zgornjo enačbo z x, pa dobimo

    \[\frac{\sin{x}}{x}=\frac{2^n}{x}\sin{\frac{x}{2^n}}\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\dots\cos{\frac{x}{2^n}}\]

ali

    \[\frac{\sin{x}}{x}=\frac{\sin{\frac{x}{2^n}}}{\frac{x}{2^n}}\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\dots\cos{\frac{x}{2^n}}\]

V prvem faktorju na desni prepoznamo nastavek znane limite in ko gre n\to\infty , gre ta faktor proti 1, dobimo pa produkt neskončnih cosinusov:

    \[\frac{\sin{x}}{x}=\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\cos{\frac{x}{2^3}}\dots\]

Na spletu najdemo,da je ta obrazec prvi našel slavni L.Euler.  A če vanj vstavimo x=\frac{\pi}{2}, dobimo

    \[\frac{2}{\pi}=\frac{\sqrt{2}}{2}\cdot \frac{\sqrt{2+\sqrt{2}}}{2}\cdot\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\cdot\]

Ta izraz pa je objavil Francois Viète leta 1593, torej več kot stoletje prej. Gre tudi za prvi primer zapisa neskončnega produkta sploh.