O Vinc

Končal gimnazijo v Črnomlju 1971, pričel honorarno poučevati na tej gimnaziji v šol.letu 1973/74, se v šol. letu 1976/77 zaposlil kot učitelj matematike, leta 1978 diplomiral iz pedagoške matematike pri dr. Niku Prijatelju s temo Galoisova teorija. Na gimnaziji in poklicni kovinarski šoli učil matematiko, fiziko in računalništvo ter informatiko, dokumentaristiko in arhivistiko. Dolgoletni mentor šahovskega, fotografskega, fizikalnega, računalniškega in<a \href{http://www2.arnes.si/48/sscrnomelj/astro.html}{ astronomskega} krožka. Absolvent 3. stopnje pedagoške fizike, v 90. letih član skupine za prenovo gimnazijske fizike, avtor programske opreme za merilno krmilni vmesnik, soavtor učbenikov za gimnazijo Fizika-Mehanika in Fizika-Elektrika. Mentor trinajstim raziskovalnim nalogam v okviru Gibanja Znanost mladini ter trem raziskovalnim nalogam v okviru Krkinih nagrad in številnim tekmovalcem iz logike, matematike, fizike in računalništva. Mentor \href{http://www2.arnes.si/48/ssnmcrnom5/sola/}{2. spletne strani šole}, pobudnik in od 2007 do 2010 urednik spletnih učilnic Srednje šole Črnomelj. Pobudnik šolske Facebook strani. Več najdete na njegovi \href{http://vincenc.petruna.com/}{spletni strani.}

Znana limita in njena uporaba

V srednji šoli se četrtošolci srečajo z limito

    \[\lim_{x\to 0}{\frac{\sin{x}}{x}}=1.\]

Dokaz najdejo v svojem učbeniku. Med primeri uporabe te limite pa pogosto umanjkata naslednja:

plošćina kroga

Imejmo krog s središčem T in polmerom r, po Arhimedovo mu včrtajmo n-kotnik. Le-ta je iz n skladnih enakokokrakih trikotnikov , njegova ploščina torej znaša

    \[S_n=nr^2\sin{\frac{\pi}{n}}\cos{\frac{\pi}{n}}=\frac{nr^2\sin{\frac{2\pi}{n}}}{2}.\]

Če večamo n, gre ploščina n-kotnika proti ploščini kroga, zato je ploščina kroga S enaka

    \[S=\lim_{n\to \infty}{S_n}=\frac{r^2}{2}\lim_{n\to\infty}{\frac{nr^2\sin{\frac{2\pi}{n}}}{2}}=  \frac{2\pi r^2}{2}\lim_{n\to\infty}{\frac{\sin{\frac{2\pi}{n}}}{\frac{2\pi}{n}}}\]

Uvedimo u=\frac{2\pi}{n} in opazimo, da ko gre n\to \infty, gre u\to 0, pa lahko pišemo

    \[S= \pi r^2\lim_{u\to 0}{\frac{\sin{u}}{u}}=\pi r^2.\]

Dokazali smo torej obrazec za ploščino kroga.

Izračun Ludolfovega Števila

Uporabimo večkrat obrazec za sinus dvojnega kota, pa dobimo produkt n faktorjev

    \[\sin{x}=2\sin{\frac{x}{2}}\cos{\frac{x}{2}}=\]

    \[=2^2\cos{\frac{x}{2}}\sin{\frac{x}{4}}\cos{\frac{x}{4}}=\dots\]

    \[\dots=2^n\sin{\frac{x}{2^n}}\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\dots\cos{\frac{x}{2^n}}.\]

Delimo zgornjo enačbo z x, pa dobimo

    \[\frac{\sin{x}}{x}=\frac{2^n}{x}\sin{\frac{x}{2^n}}\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\dots\cos{\frac{x}{2^n}}\]

ali

    \[\frac{\sin{x}}{x}=\frac{\sin{\frac{x}{2^n}}}{\frac{x}{2^n}}\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\dots\cos{\frac{x}{2^n}}\]

V prvem faktorju na desni prepoznamo nastavek znane limite in ko gre n\to\infty , gre ta faktor proti 1, dobimo pa produkt neskončnih cosinusov:

    \[\frac{\sin{x}}{x}=\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\cos{\frac{x}{2^3}}\dots\]

Na spletu najdemo,da je ta obrazec prvi našel slavni L.Euler.  A če vanj vstavimo x=\frac{\pi}{2}, dobimo

    \[\frac{2}{\pi}=\frac{\sqrt{2}}{2}\cdot \frac{\sqrt{2+\sqrt{2}}}{2}\cdot\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\cdot\]

Ta izraz pa je objavil Francois Viète leta 1593, torej več kot stoletje prej. Gre tudi za prvi primer zapisa neskončnega produkta sploh.

 

Lagrangeova identiteta

Med nenavadno snovjo, ki smo jih pri matematiki spoznavali pri prof. Marijanu Skrbinšku v 2. letniku črnomaljske gimnazije leta 1968, je bila tudi Lagrangeova identiteta vektorjev. Takole se glasi

    \[(\vec{a} \times \vec{b})\cdot (\vec{c} \times \vec{d})=(\vec{a}\cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a}\cdot \vec{d})(\vec{b}\cdot \vec{c}).\]

Identiteto smo dokazali po srednješolsko tako, da smo vektorje zapisali v ortonormirani bazi. Dosti pisanja, a tudi dobrodošla vaja. Leva stran je enaka

(\vec{a}\times \vec{b})\cdot(\vec{c}\times \vec{d})=((a_1,a_2,a_3)\times (b_1,b_2,b_3))\cdot ((c_1,c_2,c_3)\times (d_1,d_2,d_3))=(a_2b_3-a_3b_2,a_3b_1-a_1b_3,a_1b_2-a_2b_1)\cdot(c_2d_3-c_3d_2,c_3d_1-c_1d_3,c_1d_2-c_2d_1)= =a_2b_3c_2d_3-a_2b_3c_3d_2-a_3b_2c_2d_3+a_3b_2c_3d_2+ +a_3b_1c_3d_1-a_3b_1c_1d_3-a_1b_3c_3d_1+a_1b_2c_1d_2+ +a_1b_2c_2d_1-a_2b_1c_1d_2-a_2b_1c_1d_2+a_2b_1c_2d_1.

Desna pa

(\vec{a}\cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a}\cdot \vec{d})(\vec{b}\cdot \vec{c})= =(a_1c_1+a_2c_2+a_3c_3)(b_1d_1+b_2d_2+b_3d_3)-(a_1d_1+a_2d_2+a_3d_3)(b_1c_1+b_2c_2+b_3c_3)=a_1b_1c_1d_1+a_1b_2c_1d_2+a_1b_3c_1d_3+a_2b_1c_2d_1+a_2b_2c_2d_2+a_2b_3c_2d_3+a_3b_1c_3d_1+a_3b_2c_3d_2+a_3b_3c_3d_3-a_1b_1c_1d_1-a_1b_2c_2d_1-a_1b_3c_3d_1-a_2b_1c_1d_2-a_2b_2c_2d_2-a_2b_3c_3d_2-a_3b_1c_1d_3-a_3b_2c_2d_3-a_3b_3c_3d_3.

Primerjajmo obe strani, pa res ugotovimo enakost.