Verjetnost in Facebook(2)

Andrej sprašuje naslednje:“Kolikšna je verjetnost, da imajo trije od mojih 61 FB prijateljev v istem dnevu rojstni dan?”

Prijazno so me opozorili, da je v prejšnjem izračunu napaka. Poskusimo torej znova:

Verjetnost, da ima oseba na določen dan v (neprestopnem) letu rojstni dan, je

\[p=\frac{1}{365},\]

da ga  nima, pa

\[1-p=\frac{364}{365}.\]

Vprašajmo se, kolikšna je verjetnost, da ima v danem dnevu rojstni dan natanko k izmed n oseb.  To pomeni, da ima v tem dnevu k oseb rojstni dan, n-k pa ne. Ker so rojstni dnevi oseb paroma neodvisni med seboj, gre za zaporedje neodvisnih poskusov.  Prešteti moramo torej, koliko je produktov oblike

\[p^k(1-p)^{n-k}.\]

Teh pa je toliko, kolikor je kombinacij n elementov reda k brez ponavljanja. Tako pridemo do Bernoullijeve formule

\[P_n(k)={n \choose k}p^k(1-p)^{n-k}.\]

ki pove, kolikšna je verjetnost, da se dogodek A (v tem primeru “ima rojstni dan”) zgodi natanko k- krat, če so poskusi neodvisni.  Iskan odgovor na Andrejevo vprašanje (kolikšna je verjetnost, da imajo v določenem dnevu natanko 3 ljudje rojstni dan) je torej

\[P_{60}(3)={60 \choose 3}\left(\frac{1}{365}\right)^3\left(\frac{364}{365}\right)^{57},\]

kar je nekaj več kor 6 desettisočink.  Verjetnost, da imajo v določenem dnevu rojstni dan vsaj trije, da dobimo npr. tako, da od 1 odštejemo verjetnosti dogodkov, da ima v tem dnevu  rojstni dan 0, 1 in 2 osebi.

Trikotno tabelo teh verjetnosti lahko naredimo kar v kaki preglednici. Binomski simbol realiziramo s funkcijo =COMBIN(N;K).