PTR v srednji šoli(10)

povečanje mase

Zadnjič smo ugotovili, da so dogodki, kot jih izmerita postajenačelnik in sprevodnik, štiri razsežni vektorji v prostoru-času. Če upoštevamo, da se koordinati y in z, ki sta prečni na gibanje vlaka, ne spreminjata, zadošča, da pišemo samo dvorazsežne vektorje, torej

\[\begin{bmatrix}ct\\x\end{bmatrix}\]     in     \[\begin{bmatrix}ct^\prime\\x^\prime\end{bmatrix}\]

Tudi druge količine nastopajo v PTR v parih. Hitrost,  kot jo izmeri postajenačelnik, je npr. odvod dogodka po času, torej

\[\begin{bmatrix}\dot{ct}\\\dot{x}\end{bmatrix}=\begin{bmatrix}c\\v\end{bmatrix}\]      in     \[\begin{bmatrix}\dot{ct^\prime}\\\dot{x^\prime}\end{bmatrix}=\begin{bmatrix}c\\v^\prime\end{bmatrix}.\]

Ravno tako zapišemo gibalno količino v obeh sistemih

\[\begin{bmatrix}G_o\\G\end{bmatrix}=\begin{bmatrix}mc\\mv\end{bmatrix}\]      in      \[\begin{bmatrix}{G_o^\prime}\\{G^\prime}\end{bmatrix}=\begin{bmatrix}m^\prime c\\m^\prime v^\prime\end{bmatrix}.\]

Vemo že, da  dogodka tudi gibalni količini, ki ju  izmerita sprevodnik in postajenačelnik, vežeta Lorentzovi transformaciji

\[
\begin{bmatrix}G_o\\G\end{bmatrix}=\begin{bmatrix}\gamma&\gamma\beta\\\gamma\beta&\gamma\end{bmatrix}\begin{bmatrix}G_o^\prime\\G^\prime\end{bmatrix}
\]

Opazujmo telo, ki se pelje v vlaku in miruje glede na sprevodnika, tako da on izmeri lastno maso telesa

\[m^\prime=m_o\]

Njegova gibalna količina je za postajenačelnika

  \[\begin{bmatrix}G_o\\G\end{bmatrix}=\begin{bmatrix}mc\\mv\end{bmatrix}\],

za sprevodnika pa

\[\begin{bmatrix}{G_o^\prime}\\{G^\prime}\end{bmatrix}=\begin{bmatrix}m_o c\\0\end{bmatrix}.\]

Vstavimo to v Lorentzove transformacije, pa dobimo

\[
\begin{bmatrix}mc\\mv\end{bmatrix}=\begin{bmatrix}\gamma&\gamma\beta\\\gamma\beta&\gamma\end{bmatrix}\begin{bmatrix}m_oc\\0\end{bmatrix}
\]

Prva vrstica nam da

\[mc=\frac{m_oc}{\sqrt{1-\beta^2}},\]

druga pa

\[mv=\frac{\beta m_oc}{\sqrt{1-\beta^2}}.\]

Upoštevajmo v obeh relacijah, da je

\[\beta=\frac{v}{c},\]

pa dobimo obakrat

\[m=\frac{m_o}{\sqrt{1-\beta^2}}=\frac{m_o}{\sqrt{1-\frac{v^2}{c^2}}}.\]

Masa delca se torej poveča za vse opazovalce, ki ne mirujejo glede nanjo. Povečanje je skladno z relativističnim faktorjem, svetlobni hitrosti bi ustrezala naskončna masa delca. Posledica tega je, da delec, ki mirovno maso ima, ne more doseči svetlobne hitrosti.

Tako se lahko s svetlobno hitrostjo lahko gibljejo samo delci brez mirovne mase, npr. fotoni. Vendar se delci z mirovno maso, kot so npr. elektroni ali protoni, lahko, če imajo dovolj energije (npr. v pospeševalnikih) tej hitrostil zelo približajo.

PTR v srednji šoli(9)

Lorenzove transformacije lahko zapišemo v kompaktnejši matrični obliki:

\[
\begin{bmatrix}ct\\x\end{bmatrix}=\begin{bmatrix}\gamma&\gamma\beta\\\gamma\beta&\gamma\end{bmatrix}\begin{bmatrix}ct^\prime\\x^\prime\end{bmatrix}
\]

V njej nastopa Lorenzova matrika

\[
\begin{bmatrix}\frac{1}{\sqrt{1-\beta^2}}&\frac{\beta}{\sqrt{1-\beta^2}}\\\frac{\beta}{\sqrt{1-\beta^2}}&\frac{1}{\sqrt{1-\beta^2}}
\end{bmatrix}\quad\quad\quad(1)
\]

Prvo koordinato v levem vektorju enačbe (1) dobimo tako, da skalarno pomnožimo 1. vrstico matrike z desnim vektorjem in podobno tudi 2. koordinato. Pred matriko je relativistični faktor.

Opazimo, da se s svetlobno hitrostjo c pomnoženi čas v zapisu obnaša tako kot koordinata x. Če pišemo še koordinati y in z, ki sta prečni na smer gibanja, dobimo

\[
\begin{bmatrix}
ct\\x\\y\\z
\end{bmatrix}=
\begin{bmatrix}
\gamma& \gamma\beta&0&0\\\gamma\beta&\gamma&0&0\\0&0&1&0\\0&0&0&1
\end{bmatrix}\begin{bmatrix}
ct^\prime\\x^\prime\\y^\prime\\z^\prime\end{bmatrix}
\]

Seveda tudi tu velja, da dobimo i-to komponento levega vektorja tako, da skalarno pomnožimo i-to vrstico matrike z desnim vektorjem. Še obratna Lorenzova transformacija:

\[
\begin{bmatrix}ct^\prime\\x^\prime\\y^\prime\\z^\prime
\end{bmatrix}=
\begin{bmatrix}
\gamma& -\gamma\beta&0&0\\-\gamma\beta&\gamma&0&0\\0&0&1&0\\0&0&0&1
\end{bmatrix}\begin{bmatrix}ct\\x\\y\\z
\end{bmatrix}
\]

Relacije nam ponujajo odgovor na vprašanje, kaj je čas. Čas je pač ena od koordinat štirirazsežnega prostora-časa. Vektorju

\[
\begin{bmatrix}
ct\\x\\y\\z
\end{bmatrix}\]

pravimo dogodek  v prostoru- času. Lorentzove transformacije nam pomagajo preračunavati dogodke iz enega v drug inercialni sistem v prostoru-času.

PTR v srednji šoli(8)

V obrazcih posebne teorije relativnosti se ves čas pojavlja relativistični faktor

[math]\gamma=\frac{1}{\sqrt{1-\beta^2}},[/math]

pri čemer je

[math]\beta=\frac{v}{c}[/math]

razmerje med hitrostjo telesa in svetlobno hitrostjo.  Odvisnost relativističnega faktorja od tega razmerja kaže naslednja animacija

 

Opazimo, da je pri običajnih hitrostih ta faktor blizu 1, zato relativističnih pojavov ne opazimo in lahko uporabljamo tudi Galilejeve transformacije. Faktor je treba upoštevati šele, ko imamo opravka s hitrostmi, ki niso majhne v primeri s hitrostjo svetlobe, pa tudi, ko potrebujemo izjemno natančnost meritev.

PTR v srednji šoli (7)

novo seštevanje hitrosti

Ker pri velikih hitrostih ne veljajo Galilejeve transformacije, tudi staro seštevanje hitrosti ne velja več.  Izpeljimo  torej pravi izraz.

Naj se v sprevodnikovem sistemu premika palica proti začetku vlaka(spomnimo se, ta vozi mimo postajenačelnika s hitrostjo v) tako, da sprevodnik zanjo nameri hitrost v’.  Postajenačelnik pa uporabi Lorentzove transformacije in dobi

[math]v_p=\frac{\Delta x}{\Delta t}=\frac{(\Delta x^\prime+v\Delta t^\prime)\sqrt{1-\beta^2}}{\sqrt{1-\beta^2}(\Delta t^\prime+(v/c^2)\Delta x^\prime)}[/math]

Okrajšamo korene in delimo števec in imenovalec z [math]\Delta t^\prime,[/math]  pa dobimo

[math]v_p=\frac{v+v^\prime}{1+\frac{v\cdot v^\prime}{c^2}}.\quad \quad \quad (1)[/math]

 V računu smo upoštevali, da je

[math]v^\prime=\frac{\Delta x^\prime}{\Delta t^\prime}[/math]

hitrost, ki jo izmeri sprevodnik. Pa smo izpeljali novi obrazec za seštevanje hitrosti. Njegova značilnost je, da postajenačelnik ne more nameriti več kot c celo, če se vlak glede nanj giblje s hitrostjo c in se palica glede na vlak giblje s hitrostjo c.

Torej: če se vozite s hitrostjo c in svetite  z baterijo v smeri gibanja, ima svetloba baterije glede na mirujočega opazovalca hitrost c. To se seveda se ne sklada z Galilejevim seštevanjem hitrosti, ujema pa se z načelom o svetlobni hitrosti.