PTR v srednji šoli(10)

povečanje mase

Zadnjič smo ugotovili, da so dogodki, kot jih izmerita postajenačelnik in sprevodnik, štiri razsežni vektorji v prostoru-času. Če upoštevamo, da se koordinati y in z, ki sta prečni na gibanje vlaka, ne spreminjata, zadošča, da pišemo samo dvorazsežne vektorje, torej

\[\begin{bmatrix}ct\\x\end{bmatrix}\]     in     \[\begin{bmatrix}ct^\prime\\x^\prime\end{bmatrix}\]

Tudi druge količine nastopajo v PTR v parih. Hitrost,  kot jo izmeri postajenačelnik, je npr. odvod dogodka po času, torej

\[\begin{bmatrix}\dot{ct}\\\dot{x}\end{bmatrix}=\begin{bmatrix}c\\v\end{bmatrix}\]      in     \[\begin{bmatrix}\dot{ct^\prime}\\\dot{x^\prime}\end{bmatrix}=\begin{bmatrix}c\\v^\prime\end{bmatrix}.\]

Ravno tako zapišemo gibalno količino v obeh sistemih

\[\begin{bmatrix}G_o\\G\end{bmatrix}=\begin{bmatrix}mc\\mv\end{bmatrix}\]      in      \[\begin{bmatrix}{G_o^\prime}\\{G^\prime}\end{bmatrix}=\begin{bmatrix}m^\prime c\\m^\prime v^\prime\end{bmatrix}.\]

Vemo že, da  dogodka tudi gibalni količini, ki ju  izmerita sprevodnik in postajenačelnik, vežeta Lorentzovi transformaciji

\[
\begin{bmatrix}G_o\\G\end{bmatrix}=\begin{bmatrix}\gamma&\gamma\beta\\\gamma\beta&\gamma\end{bmatrix}\begin{bmatrix}G_o^\prime\\G^\prime\end{bmatrix}
\]

Opazujmo telo, ki se pelje v vlaku in miruje glede na sprevodnika, tako da on izmeri lastno maso telesa

\[m^\prime=m_o\]

Njegova gibalna količina je za postajenačelnika

  \[\begin{bmatrix}G_o\\G\end{bmatrix}=\begin{bmatrix}mc\\mv\end{bmatrix}\],

za sprevodnika pa

\[\begin{bmatrix}{G_o^\prime}\\{G^\prime}\end{bmatrix}=\begin{bmatrix}m_o c\\0\end{bmatrix}.\]

Vstavimo to v Lorentzove transformacije, pa dobimo

\[
\begin{bmatrix}mc\\mv\end{bmatrix}=\begin{bmatrix}\gamma&\gamma\beta\\\gamma\beta&\gamma\end{bmatrix}\begin{bmatrix}m_oc\\0\end{bmatrix}
\]

Prva vrstica nam da

\[mc=\frac{m_oc}{\sqrt{1-\beta^2}},\]

druga pa

\[mv=\frac{\beta m_oc}{\sqrt{1-\beta^2}}.\]

Upoštevajmo v obeh relacijah, da je

\[\beta=\frac{v}{c},\]

pa dobimo obakrat

\[m=\frac{m_o}{\sqrt{1-\beta^2}}=\frac{m_o}{\sqrt{1-\frac{v^2}{c^2}}}.\]

Masa delca se torej poveča za vse opazovalce, ki ne mirujejo glede nanjo. Povečanje je skladno z relativističnim faktorjem, svetlobni hitrosti bi ustrezala naskončna masa delca. Posledica tega je, da delec, ki mirovno maso ima, ne more doseči svetlobne hitrosti.

Tako se lahko s svetlobno hitrostjo lahko gibljejo samo delci brez mirovne mase, npr. fotoni. Vendar se delci z mirovno maso, kot so npr. elektroni ali protoni, lahko, če imajo dovolj energije (npr. v pospeševalnikih) tej hitrostil zelo približajo.

PTR v srednji šoli(9)

Lorenzove transformacije lahko zapišemo v kompaktnejši matrični obliki:

\[
\begin{bmatrix}ct\\x\end{bmatrix}=\begin{bmatrix}\gamma&\gamma\beta\\\gamma\beta&\gamma\end{bmatrix}\begin{bmatrix}ct^\prime\\x^\prime\end{bmatrix}
\]

V njej nastopa Lorenzova matrika

\[
\begin{bmatrix}\frac{1}{\sqrt{1-\beta^2}}&\frac{\beta}{\sqrt{1-\beta^2}}\\\frac{\beta}{\sqrt{1-\beta^2}}&\frac{1}{\sqrt{1-\beta^2}}
\end{bmatrix}\quad\quad\quad(1)
\]

Prvo koordinato v levem vektorju enačbe (1) dobimo tako, da skalarno pomnožimo 1. vrstico matrike z desnim vektorjem in podobno tudi 2. koordinato. Pred matriko je relativistični faktor.

Opazimo, da se s svetlobno hitrostjo c pomnoženi čas v zapisu obnaša tako kot koordinata x. Če pišemo še koordinati y in z, ki sta prečni na smer gibanja, dobimo

\[
\begin{bmatrix}
ct\\x\\y\\z
\end{bmatrix}=
\begin{bmatrix}
\gamma& \gamma\beta&0&0\\\gamma\beta&\gamma&0&0\\0&0&1&0\\0&0&0&1
\end{bmatrix}\begin{bmatrix}
ct^\prime\\x^\prime\\y^\prime\\z^\prime\end{bmatrix}
\]

Seveda tudi tu velja, da dobimo i-to komponento levega vektorja tako, da skalarno pomnožimo i-to vrstico matrike z desnim vektorjem. Še obratna Lorenzova transformacija:

\[
\begin{bmatrix}ct^\prime\\x^\prime\\y^\prime\\z^\prime
\end{bmatrix}=
\begin{bmatrix}
\gamma& -\gamma\beta&0&0\\-\gamma\beta&\gamma&0&0\\0&0&1&0\\0&0&0&1
\end{bmatrix}\begin{bmatrix}ct\\x\\y\\z
\end{bmatrix}
\]

Relacije nam ponujajo odgovor na vprašanje, kaj je čas. Čas je pač ena od koordinat štirirazsežnega prostora-časa. Vektorju

\[
\begin{bmatrix}
ct\\x\\y\\z
\end{bmatrix}\]

pravimo dogodek  v prostoru- času. Lorentzove transformacije nam pomagajo preračunavati dogodke iz enega v drug inercialni sistem v prostoru-času.

PTR v srednji šoli(8)

V obrazcih posebne teorije relativnosti se ves čas pojavlja relativistični faktor

$$\gamma=\frac{1}{\sqrt{1-\beta^2}},$$

pri čemer je

$$\beta=\frac{v}{c}$$

razmerje med hitrostjo telesa in svetlobno hitrostjo.  Odvisnost relativističnega faktorja od tega razmerja kaže naslednja animacija

 

Opazimo, da je pri običajnih hitrostih ta faktor blizu 1, zato relativističnih pojavov ne opazimo in lahko uporabljamo tudi Galilejeve transformacije. Faktor je treba upoštevati šele, ko imamo opravka s hitrostmi, ki niso majhne v primeri s hitrostjo svetlobe, pa tudi, ko potrebujemo izjemno natančnost meritev.

PTR v srednji šoli (7)

novo seštevanje hitrosti

Ker pri velikih hitrostih ne veljajo Galilejeve transformacije, tudi staro seštevanje hitrosti ne velja več.  Izpeljimo  torej pravi izraz.

Naj se v sprevodnikovem sistemu premika palica proti začetku vlaka(spomnimo se, ta vozi mimo postajenačelnika s hitrostjo v) tako, da sprevodnik zanjo nameri hitrost v’.  Postajenačelnik pa uporabi Lorentzove transformacije in dobi

[math]v_p=\frac{\Delta x}{\Delta t}=\frac{(\Delta x^\prime+v\Delta t^\prime)\sqrt{1-\beta^2}}{\sqrt{1-\beta^2}(\Delta t^\prime+(v/c^2)\Delta x^\prime)}[/math]

Okrajšamo korene in delimo števec in imenovalec z [math]\Delta t^\prime,[/math]  pa dobimo

[math]v_p=\frac{v+v^\prime}{1+\frac{v\cdot v^\prime}{c^2}}.\quad \quad \quad (1)[/math]

 V računu smo upoštevali, da je

[math]v^\prime=\frac{\Delta x^\prime}{\Delta t^\prime}[/math]

hitrost, ki jo izmeri sprevodnik. Pa smo izpeljali novi obrazec za seštevanje hitrosti. Njegova značilnost je, da postajenačelnik ne more nameriti več kot c celo, če se vlak glede nanj giblje s hitrostjo c in se palica glede na vlak giblje s hitrostjo c.

Torej: če se vozite s hitrostjo c in svetite  z baterijo v smeri gibanja, ima svetloba baterije glede na mirujočega opazovalca hitrost c. To se seveda se ne sklada z Galilejevim seštevanjem hitrosti, ujema pa se z načelom o svetlobni hitrosti.

 

 

Obrezovanje sadnega drevja


Obrezovanje v januarju

How to Germinate Apple and Pear Seeds Quickly and Easily

How To Grow Apple Trees

How to Prune Fruit Trees

How To Prune Apple Trees Between Autumn And Spring

Trimming Fruit Trees

Apple Pruning

Fruitwise apple pruning guide-tipping back

Severe Pruning on Two Neglected Apple Trees

How to Prune an Old, Neglected, Out of Control Fruit Tree in Early Spring – Gurney’s Video

How to Prune a Mature Pear Tree in Early Spring – Gurney’s Video

How to Prune a large, four-year-old Peach Tree in Late Winter – Gurney’s Video

pruning plums

Pruning Cherry Tree

A Quick Guide to Summer Pruning – Gurney’s Video

Kiwi Plant Care Tips and Info – Gurney’s Video

 

Zemljevid

[google-map-v3 width=”650″ height=”700″ zoom=”15″ maptype=”SATELLITE” mapalign=”center” latitude=”0″ longitude=”0″ addresscontent=”Črnomelj” showmarker=”false” animation=”DROP” maptypecontrol=”true” pancontrol=”true” zoomcontrol=”true” scalecontrol=”true” streetviewcontrol=”true” bubbleautopan=”false” showbike=”true” showtraffic=”true” showpanoramio=”false”]

 

PTR v srednji šoli (6)

Zadnjič smo izpeljali Lorenzove transformacije, sedaj pa si oglejmo nekaj  zanimiviih posledic. Prva je skrčenje dolžine, druga pa podaljšanje časa.

Skrčenje (kontrakcija) dolžine

Imejmo v sprevodnikovem opazovalnem sistemu palico, položeno v smeri osi $x’$. Definirajmo najprej lastno dolžino $L_0$ palice kot dolžino palice v sistemu, glede na katerega le-ta miruje. Ko torej sprevodnik izmeri njeno dolžino, dobi

$$L_0=x_2^\prime-x_1^\prime$$

njeno lastno dolžino $L_0.$ Ko pa isto palico meri postajenačelnik, (obe krajišči izmeri v istem trenutku, torej  $t_1=t_2$),  dobi

$$L=x_2-x_1.$$

Velja

$$L_0=x_2^\prime-x_1^\prime=\frac{x_2-x_1}{\sqrt{1-\beta^2}}=\frac{L}{\sqrt{1-\beta^2}},$$

od koder dobimo

$$L=L_o\sqrt{1-\beta^2}.$$

Ker je koren v izrazu manjši od 1, postajenačelnik torej nameri manj kot sprevodnik.  Zanj je  sprevodnikova palica krajša, do skrčitve pride samo v smeri gibanja. Hitro gibajoča se krogla ima torej obliko elipsoida s krajšo polosjo v smeri gibanja.

 Podaljšanje (Dilatacija )časa

Drugič pa naj se skupaj s sprevodnikom v točki x’ pelje ura, ki sprevodniku meri časovni interval

$$t_o=t_2^\prime-t_1^\prime.$$

Podobno kot prej bomo časovni interval, ki ga ura meri v sistemu, glede na katerrega miruje, imenovali lastni čas.  Sprevodnik torej izmeri lastni čas te ure. A na uro gleda tudi postajenačelnik, ki izmeri časovni interval t takole

$$t=t_2-t_1=\frac{(v/c^2)x^\prime+t_2^\prime-(v/c^2)x^\prime-t_1^\prime}{\sqrt{1-\beta^2}}=\frac{t_2^\prime-t_1^\prime}{\sqrt{1-\beta^2}}.$$

Za postajenačelnika je torej ta časovni interval daljši od tistega, ki ga je nameril sprevodnik, namreč

$$t=\frac{t_o}{\sqrt{1-\beta^2}}.$$


Najhitreje torej teče lastni čas, vsi ostali inecialni sistemi pa namerijo daljše časovne intervale. 

Ravno podaljšanje časa je eksperimentalno največkrat preverjano. Eden od načinov je preverjanje z dovolj (na milijadinko sekunde) natančno uro, ki jo pošljejo v kovčku na potovanje z rednimi letalskimi linijami. Ko se vrne s potovanja, kaže manj kot njena predhodno umerjena dvojčica, ki je pred tem ostala na zemlji.

Drug način je podaljšanje razpadnega časa kozmičnih delcev, ki zaradi velike hitrosti puščajo  v detektorjih daljše sledi, kot bi jih sicer.

Tako skrčenje dolžin kot podaljšanje časa upoštevajo naprave  za natančno pozicioniranje GPS.

Hipokratovi luni

Povej, bistri bralec, kolikšna je skupna ploščina rumenih Hipokratovih lunic v animaciji? Stopaš po poti, ki so jo utrli Hipokrat iz Kiosa, ki je živel v 5. stol.pr.n.št. pa Alhazen okrog leta 1000 in tudi Leonardo da Vinci pet stoletij kasneje. Rezultat je skozi stoletja  vzbujal modrecem  upanje , da je kvadratura kroga morda možna….

Več pa lahko zveš v naslednjem članku. Kolikšna pa je ploščina spodnjih rumenih lun?

Potenca točke na krožnico

 

Imejmo  v ravnini krožnico K s središčem S in polmerom r ter poljubno točko O.  Potenca točke je definirana takole:

Def.:Potenca $\mathcal{P}(O,\mathcal{K})[$ točke O na krožnico [math]\cal{K}[/math] je število [math]\overrightarrow{OS}\cdot\overrightarrow{OS}-r^2. [/math]   Torej

$\mathcal{P}(O,\mathcal{K})=\overrightarrow{OS}\cdot\overrightarrow{OS}-r^2. $

Vidimo, da je zaloga vrednosti te preslikave enaka  $ \left [-r^2,\infty \right ).$ Točke izven kroga, ki ga omejuje krožnica [math]\mathcal{K}[/math], imajo potenco pozitivno, tiste znotraj pa negativno.

[embedit cf=”“]

Dokaz: Opazimo, da sta trikotnika OAD in OCB podobna, saj imata en kot skupen, drugi par kotov pa ima za zumanja obodna kota nad istim lokom.  Zato velja sorazmerje med enakoležnimi stranicami

[math]\frac{\overline{OA}}{\overline{OC}}=\frac{\overline{OD}}{\overline{OB}},[/math]
od tod pa sledi iskana enakost.

PTR v srednji šoli(5)

Zadnjič smo izpeljali  transformacije, ki ohranjajo razlike kvadratov  koordinat točk.  Uporabimo jih tokrat  za preračunavanje meritev med postajenačelnikom in sprevodnikom na drvečem vlaku. Spomnimo se, proti postajenačelniku vozi vzdolž njegove x-osi vlak s hitrostjo v , ki ni majhna v primeri s hitrostjo svetobe c.  Postajenačelnik meri čas t in koordinato x, njemu torej pripada urejen par (ct,x). Sprevodnik pa meri čas t’ in koordinato x’ vzdolž smeri gibanja, tako da mu pripada urejen par (ct’,x’).  Čase v pomnožimo  s konstanto c zato, da imata  komponenti  v urejenem paru enako enoto. Zadnjič smo videli, da se v vseh opazovalnih sistemih ohranja izraz:

$$x^2-ct^2=x^{\prime 2}-c^2t^{\prime 2}.$$

Uporabimo torej nove transformacije. Dobimo

$$ct^\prime=\frac{ct-\beta x}{\sqrt{1-\beta^2}},\qquad x^\prime=\frac{-\beta ct+x}{\sqrt{1-\beta^2}}.$$

  Parameter [math]\beta[/math] je odvisen od hitrosti vlaka. Opazujmo točko,  ki glede na sprevodnika miruje, torej x’=0. Iz zadnje zveze dobimo

$$x^\prime=0\Rightarrow x=\beta ct\Rightarrow \beta c=v.$$

$\beta$ je torej

$$\beta=\frac{v}{c}.$$

Upoštevajmo to v zgornjih zvezah, prvo tudi delimo z $c$, pa dobimo Lorentzovi formuli

$$t^\prime=\frac{t-(v/c^2)x}{\sqrt{1-\beta^2}},\qquad x^\prime=\frac{x-vt}{\sqrt{1-\beta^2}}$$

ter njuna obrata

$$t=\frac{t^\prime+(v/c^2)x^\prime}{\sqrt{1-\beta^2}},\qquad x=\frac{x^\prime+vt^\prime}{\sqrt{1-\beta^2}}.$$

Zrcaljenje točke preko krožnice

Imejmo Krožnico in točko A zunaj nje.  Poiščimo zrcalno sliko A’  točke glede na dano krožnico.

Ravnamo takole:

  1. Na krožnici izberemo poljubno točko D in narišemo polmer SD,
  2. Narišemo simetralo daljice AD,
  3. Narišemo tangento na krožnico v točki D,
  4. narišemo krožnico s središčem v presečišču S’ simetrale in tangente in polmerom S’A.
  5. Iskana točka A’ je presečišče daljice SA in nove krožnice.

 

Tangente(2)

Konstrukcija tangent na dve dani krožnici poteka takole:

  1. Narišemo premico p skozi središči obeh krožnic,
  2. skozi središče 1. krožnice narišemo poljubno premico, skozi središče druge pa k tej premici vzporednico,
  3. skozi presečišča premic s krožnicama narišemo premico q. Ta seka premico  v točki  M,
  4. skozi središče vsake od krožnic narišemo pravokotnico na q. Dobimo dotikališči tangent na krožnico.
  5. Podobno konstruiamo tudi drugi par tangent, ki ima presečišče med krožnicama.

Tangente

Tangenta iz točke na krožnico.

Dana sta točka A in krožnica s središčem S.  Naša naloga je narisati tangento na krožnico skozi točko A. Ločimo dva primera: ko je točka A na krožnici in ko je točka A izven kroga.  V prvem primeru je tangenta premica, ki je pravokotnica na polmer SA. V drugem primeru pa je konstrukcija nekoliko daljša, njeno bistvo je najti točki na krožnici,  ki sta dotikališči tangent. Nalogo lahko rešimo na več načinov, dva sta znana še iz antike. Prvi pripada Talesu iz Mileta (Mala Azija) iz okrog 600 pr.n.št:

Drugi način pa pripada Evklidu iz Aleksandrije (Egipt) okoli 300 pr.n.št.

Na krožnici si poljubno izberemo točko t in skoznjo potegnemo tangento. Nato narišemo krožnico (S,P), ki seka tangento v točkah M in N. Nazadnje skozi P narišemo krožnico s polmerom TM. Le-ta seka prvotno krožnico v iskanih dotikališčih tangent.

Orodje za dinamično geometrijo Geogebra omogoča konstrukcijo tangente direktno, saj vsebuje gumb za to. Lahko pa tudi najprej narišemo polaro – njeni presečišči s krožnico sta dotikališči tangent.

 

Ali nas Pitagorov izrek lahko preseneti?

Pitagorov izrek poznamo vsi še iz osnovne šole. Kljub temu  nas spodnji prikaz utegne presenetiti.

 

This is a Java Applet created using GeoGebra from www.geogebra.org – it looks like you don’t have Java installed, please go to www.java.com

Vincenc Petruna, Created with GeoGebra

  • Ustavi animacijo in preveri, ali je vsota ploščin enakostraničnih trikotnikov nad katetama pravokotnega trikotnika enaka ploščini enakostraničnega trikotnika nad hipotenuzo.
  • Preveri še, ali to velja tudi za pravilne petkotnike in šestkotnike.
  • Ali trditev velja za poljubne pravilne n-kotnike?
  •  Ali velja celo za kroge s premeri, ki so enaki stranicam trikotnika?
  • Utemelji svoje trditve tudi z računom.

PTR v srednji šoli(4)

NOVE TRANSFORMACIJE

Iščemo torej linearno transformacijo, ki prevede točko $(u,v)$ v točko $(u^\prime,v^\prime)$ tako, da  velja zveza
$$u^{\prime 2}-v^{\prime 2}=u^2-v^2.$$
Ker je transformacija linearna,  jo iščemo v obliki
$$u=Au^\prime +Bv^\prime \qquad v=Cu^\prime +Dv^\prime ,$$
pri čemer so A, B,C in D konstante, ki jih je treba določiti. Vstavimo zato te transformacije v zgornjo enačbo, pa dobimo
$$(Au^\prime+Bv^\prime )^2-(Cu^\prime+Dv^\prime )^2=u^{\prime2}-v^{\prime 2}.$$
Po kvadriranju in primerjanju koeficientov dobimo naslednje enačbe
$$A^2-C^2=1,\quad AB=CD, \quad C^2-D^2=-1.$$
Imamo torej tri enačbe in štriri neznanke. Zato uvedemo parameter
$$\beta=\frac{C}{A}=\frac{B}{D}$$
ter z njim izrazimo vse koeficiente. Dobimo
$$A=D=\frac{1}{\sqrt{1-\beta^2}},\quad B=C=\frac{\beta}{\sqrt{1-\beta^2}}$$
Iskane transformacije so torej
$$u=\frac{u^\prime+\beta v^\prime}{\sqrt{1-\beta^2}},\quad v=\frac{\beta u^\prime+v^\prime}{\sqrt{1-\beta^2}},$$
obratne transformacije pa
$$u^\prime=\frac{u-\beta v}{\sqrt{1-\beta^2}},\quad v^\prime=\frac{-\beta u+v}{\sqrt{1-\beta^2}}.$$
Naslednjič pa jim bomo dali fizikalni pomen.

PTR v srednji šoli(3)

Oba inercialna sistema so povezovale Galilejeve transformacije, a te smo v zadnjem poglavju razglasi za neveljavne. Potrebujemo torej nove transformacije.

Vprašamo se, ali je kaj, kar opišeta enako oba,  sprevodnik in postajenačelnik.  Odgovor nam spet prinese naslednji miselni poskus:

Mislimo si, da se vlak s sprevodnikom približuje postajenačelniku. Koordinatna sistema obeh imata vzporedne osi, vlak in z njim gibajoći se koordinatni sistem pa se giblje  v smeri  postajenačelnikove x-osi.  V trenutku, so oba koordinatna sistema pokrijeta, na vlaku zasveti okrogla luč..  Sprevodnik  opiše svetlobo kot krogelni val, ki se širi s hitrostjo svetlobe c na vse strani, torej

\[x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=c^2t^{\prime 2}.\].

Postajenačelnik pa val opiše podobno, a v svojih koordinatah

\[x^{2}+y^{2}+z^{ 2}=c^2t^{2}.\]

Vidimo torej, da sta opisa enaka. Velja torej

\[x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-c^2t^{\prime 2}=x^{2}+y^{2}+z^{ 2}-c^2t^{2}.\].

Ker se vlak giblje prečno na koordinate \[y,y^\prime, z, z^\prime,\] je

\[y=y^\prime,\quad z=z^\prime,\]

pa se zgornja zveza še poenostavi v

\[x^{\prime 2}-c^2t^{\prime 2}=x^{2}-c^2t^{2}.\].

Iščemo torej linearno transformacijo, ki bo zadostila zgornji enačbi.

PTR v srednji šoli (2)

Morda ste uganili, kaj je bilo treba prečrtati – Galilejeve transformacije. Na prvi pogled je nenavadno, da ne veljajo enačbe, ki so se do takrat izkazale za dobro preizkušene. A vendar imamo sedaj razmere, ki so posebne – zelo velike hitrosti. Hitrosti, ki niso majhne v primeri s hitrostjo svetlobe.  Galilejeve transformacije dobro veljajo pri majhnih hitrostih, pri ekstremnih hitrostih pa odpovejo.

Če Galilejeve transformacije ne veljajo več, potem čas ni več absoluten, temveč relativen – odvisen od opazovalnega sistema.  To pa ima v primerjavi z dosedašnjim gledanjem na svet nenavadne posledice. Oglejmo si eno od njih v naslednjem (miselnem) poskusu:

SOČASNOST JE RELATIVNA

Imejmo vlak, ki je zelo dolg in se zelo hitro giblje. Njegova dolžina naj bo 300.000km, njegova hitrost pa  4c/5. Vlak ima dvoje vrat, ki se odpirata takrat, ko žarek svetlobe iz žarnice na sredini vlaka posveti na fotocelico na vratih. Sprevodnik stoji na sredini vlaka in s stikalom odpira vrata. Ker vrata  glede na sprevodnika mirujejo, le-ta opiše odpiranje vrat takole: Od trenutka, ko posveti žarnica potuje svetloba proti zadnjim vratom in po

\[t_1=\frac{150000km\cdot s}{300000km}=0,5s\]

se le-ta odprejo. Ravno tako ponovi račun za odpiranje prvih vrat

\[t_2=\frac{150000km\cdot s}{300000km}=0,5s.\]

Oba časa sta enaka, za sprevodnika se oboja vrata torej odprejo sočasno.

Dogajanje na drvečem vlaku pa opazuje tudi postajenačelnik, ki vidi dogajanje  nekoliko drugače : Medtem, ko potuje svetloba s hitrostjo c proti zadnjim vratom, se ji le-ta približujejo s hitrostjo 4c/5. Zato se zadnja vrata odprejo po času

\[t_1=\frac{150000km\cdot s}{300000km+240000km}=\frac{5}{18}s,\]

prva vrata pa se žarku odmikajo, zato je

\[t_2=\frac{150000km\cdot s}{300000km-240000km}=2,5s.\]

Postajenačelniku se torej vrata ne odprejo istočasno, zadnja vrata se odprejo prej kot prva. Dogodka, ki sta sočasna v enem opazovalnem sistemu, nista sočasna v drugem. Pravimo, da je sočasnost dogodkov relativna, torej odvisna od opazovalnega sistema.